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Abstract
The mitotic count (MC) is an important histological parameter for prognostication of malignant neoplasms. However, it has 
inter- and intraobserver discrepancies due to difficulties in selecting the region of interest (MC-ROI) and in identifying or 
classifying mitotic figures (MFs). Recent progress in the field of artificial intelligence has allowed the development of high-
performance algorithms that may improve standardization of the MC. As algorithmic predictions are not flawless, computer-
assisted review by pathologists may ensure reliability. In the present study, we compared partial (MC-ROI preselection) and full 
(additional visualization of MF candidates and display of algorithmic confidence values) computer-assisted MC analysis to the 
routine (unaided) MC analysis by 23 pathologists for whole-slide images of 50 canine cutaneous mast cell tumors (ccMCTs). 
Algorithmic predictions aimed to assist pathologists in detecting mitotic hotspot locations, reducing omission of MFs, and 
improving classification against imposters. The interobserver consistency for the MC significantly increased with computer 
assistance (interobserver correlation coefficient, ICC = 0.92) compared to the unaided approach (ICC = 0.70). Classification 
into prognostic stratifications had a higher accuracy with computer assistance. The algorithmically preselected hotspot MC-
ROIs had a consistently higher MCs than the manually selected MC-ROIs. Compared to a ground truth (developed with 
immunohistochemistry for phosphohistone H3), pathologist performance in detecting individual MF was augmented when using 
computer assistance (F1-score of 0.68 increased to 0.79) with a reduction in false negatives by 38%. The results of this study 
demonstrate that computer assistance may lead to more reproducible and accurate MCs in ccMCTs.
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Proliferation parameters of neoplastic cells correlate with 
patient prognosis for many tumor types, including canine 
cutaneous mast cell tumors (ccMCTs), and are a relevant 
criterion for treatment recommendations that come with 
considerable financial and quality of life implica-
tions.6,9,24,37,42 The mitotic count (MC) is the only prolifera-
tion marker that can be determined quickly and efficiently in 
standard histological sections stained with hematoxylin and 
eosin (HE) and is therefore routinely evaluated in every 
potentially aggressive tumor type.28,37 For ccMCT, the MC 
has been used either as a solitary parameter9,35,41 or as part of 
tumor grading systems.27 If used as a solitary prognostic 
parameter, a 2-tiered system with a MC of 0 to 5 and a MC 
>5 has been evaluated to yield a sensitivity of 32%, 39%, 
50%, and 55% (high percentage of false negatives) and 
specificity of 91%, 96%, 98%, and 99% (low percentage of 
false positives) regarding ccMCT-related deaths in different 
studies.8,9,41,42 In order to increase sensitivity, other research 
groups have proposed using a cutoff value of MC ≥ 2 (sen-
sitivity: 76% and 84%; specificity: 56% and 80% for 
ccMCT-related death)24,41 or to use a stratification of the MC 
into 3 groups (0, 1–7, >7 and 0–1, 2–7, >7, respectively; 
sensitivity and specificity not available).19,41 These data 
prove that the MC is relevant for prognostication of ccMCT; 
however, it also reveals some variability in the derived 
results, which causes uncertainty for routine evaluation of 
mitotic density and interpretation of its prognostic value. 
The question arises whether this variability could be reduced 
with standardization of the MC methods between different 
studies that would ultimately allow more appropriate treat-
ment recommendations.

The MC is usually defined as the number of mitotic fig-
ures (MFs, or cells undergoing mitosis visible with micros-
copy18) within “10 high-power fields (HPFs)” with the 
highest mitotic density, that is, hotspot tumor location.18,31,32 
Looking at this definition, 3 potential sources of variability 
for performing the MC become apparent: (1) variable size of 
the evaluated tumor area (“10 HPFs”), (2) selection of dif-
ferent tumor areas in cases with variable distribution of 
mitotic figures (mitotic density) throughout the tumor sec-
tion, and (3) inconsistent identification of individual MFs at 
high magnification and classification against imposters.18,31

Some studies have proven that it is feasible to perform 
the MC using digital microscopy and whole-slide images 
(WSIs).1,7,13,38,46 As opposed to light microscopy, the con-
cept of enumerating 10 HPFs (round fields using a micro-
scope at 400× magnification) is extraneous as the area can 
be accurately measured and labeled in the WSI (with a rect-
angular field of view). In light microscopy, the size of a 
single field of view at 400× magnification may vary notably 
depending on the field number of the microscope, and a 
standard size of 2.37 mm2 (based on the field number of 22) 
has been proposed for veterinary pathology.31,32 Instead of 
using the term “10 HPFs” for this study (that used WSI), we 
use the term “mitotic count region of interest” (MC-ROI) 

for a single, rectangular area with the size of 2.37 mm2 in the 
tumor location with the presumed highest mitotic 
density.5,11

Regarding the selection of the MC-ROI, it is common 
practice to attempt to find a single tumor area with the highest 
mitotic activity, that is, a “hotspot.”8,27,31,32,35 It has often been 
assumed (but rarely proven, eg, in human breast cancer25) that 
the most mitotically active tumor area correlates best with 
biological behavior of the neoplasm. Of note, it has been 
shown that the mitotic density varies notably between differ-
ent tumor locations in histological sections of ccMCTs and 
canine mammary carcinomas3,5,11 and that pathologists have 
some difficulties in finding hotspots.3,11,46

The pathologist’s capability to identify and classify MFs 
has been evaluated recently.16,44,45,47 Those studies compared 
the digital MCs of different pathologists in the same 
MC-ROIs and revealed an overall difference in number of 
annotated MFs by a factor of 1.5× to 3.3×.45,47 This can be 
attributed to erroneous MF detections related to failure in 
identification of MF candidates, as well as to inaccurate or 
inconsistent classification of MFs against lookalikes (such as 
apoptotic bodies, hyperchromatic or deformed nuclei, and 
inflammatory cells).18 Tabata et al38 have shown that patholo-
gists have a lower accuracy of MF detection when using 
WSIs (69% to 74%) as compared to traditional light micros-
copy (80%).

Despite the potential limitations of digital microscopy in 
detecting MFs, WSIs enable innovative computerized image 
analysis approaches that have the potential to improve MC 
reproducibility and accuracy and thereby may improve stan-
dardization of the MC methods.10,14 Development of high-
performance image analysis algorithms for MFs has only 
been possible in the last decade due to the availability of 
groundbreaking machine learning solutions (especially deep 
learning using convolutional neural networks) and availabil-
ity of large-scale datasets.3,12,43,45 Regardless of these prom-
ising advancements, one of the main points of criticism of 
deep learning is its “black box” character (ie, the unavail-
ability of decision criteria) that may result in failure of iden-
tifying algorithmic failure.10,30 In order to ensure high 
reliability, approaches that allow review of the algorithmic 
predictions by trained pathologists (computer-assisted diag-
nosis/prognosis) through visualization of algorithmic results 
as an overlay on the WSI have been recommended for future 
application.10 First computer-assisted MC software solutions 
have been recently validated for human pathologists.7,33 
However, studies that validate the utility of computer assis-
tance for each critical step of performing the MC (see above) 
and for veterinary tumor histopathology have not been pub-
lished to date.

The aim of the present study was to compare partially 
(MC-ROI preselection) and fully (additional MF candidate 
proposal) computer-assisted MC analysis with routine 
(unaided) MC analysis in WSIs of ccMCT. We evaluated the 
assistive value and limitations of computer assistance on the 
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ability of 23 pathologists to perform the overall MC, to 
determine a count below or above a prognostic cutoff, to 
select a hotspot MC-ROI, and to identify and classify indi-
vidual MFs. The ultimate goal was to identify a computer-
assisted approach that may be helpful for standardization of 
the MC.

Material and Methods

Course of Studies

For this study, anatomic pathologists (study participants) per-
formed MCs in WSIs of 50 ccMCTs at 3 stages with different 
degrees of computer assistance (none, partial, and full; Fig. 1). 
In stage 1, there was no computer assistance and participants 
were tasked with screening the WSI manually for MC-ROIs 
(mitotic hotspots) and annotating all MFs (including atypical 
MFs) within this area using their “routine” approaches. For 

stage 2 (partial computer assistance) and stage 3 (strong com-
puter assistance), WSIs were analyzed with a deep learning–
based algorithm that detected MFs in the entire tissue section. 
Based on the algorithmic MF detections, the MC was calcu-
lated for each possible tumor location resulting in the MC dis-
tribution. The ROI with the highest MC was preselected 
automatically and presented to the participants in stage 2. For 
stage 3 (full computer assistance), in addition to the same algo-
rithmic MC-ROI preselection as used in stage 2, visualization 
of the individual MFs and MF lookalike detections (to assist 
MF identification) were provided as an overlay on the WSI 
along with their corresponding algorithmic confidence values 
(to assist MF classification). These algorithmic detections were 
only used as an aid to identify and classify potential mitotic 
figures, and participants had to annotate each structure that 
they wanted to count as a mitotic figure.

Participants were instructed to follow the course of the 3 
stages strictly and to wait at least 3 days until the next stage 

Figure 1.  Overview of the course of the study (stages 1–3) with different degrees of computer assistance (red arrows) of the study 
participants in 3 examination time points (stages). The deep learning model (concatenation of 2 convolutional neural networks) that was used 
in this study for computer-assistance was developed in a previous study using an independent training and test dataset with different WSI from 
the same laboratory that provided the study cases.12 ccMCT, canine cutaneous mast cell tumors; MC-ROI, mitotic count region of interest; 
MF, mitotic figure.
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(often, there were multiple weeks between 2 stages). While 
performing the MCs, participants labeled the enumerated MFs 
(including atypical MFs) in the exact location of the digital 
image with a specialized annotation software. This method 
allows determination of the ability of participants and the abil-
ity of the deep learning–based model to identify individual 
MFs (on the object-level) compared to a gold standard–derived 
(pHH3 IHC-assisted) ground truth dataset. After the study, 
participants were asked to fill out an opinion survey.

Study Cases

Random ccMCT cases with an equal distribution of low and 
high histologic grade27 (based on the original pathology reports) 
were selected from the archive of the Institute of Veterinary 
Pathology, Freie Universität Berlin. One tissue block from each 
of these cases with the largest tumor area was selected. 
Histological sections were produced from each of the blocks 
and stained with HE using the same tissue stainer (ST5010 
Autostainer XL; Leica) at different batches and time points. 
Glass slides were digitized with a linear scanner (ScanScope 
CS2; Leica) using default settings. WSIs with one focal scan 
plane were produced at a magnification of 400× (image reso-
lution: 0.25 µm per pixel). Specimens with overall very poor 
tissue preservation (ie, marked loss of nuclear details in most of 
the tumor section) and cases with a tumor section of <12 mm2 
(measured by polygon annotation) were excluded. This proce-
dure was followed until 35 low-grade cases and 35 high-grade 
cases (based on the original pathology reports) were selected. 
Clinical follow-up (patient outcome) was not considered for 
this study as the main goal was validation of different MC 
methods and not to determine prognosis. Local authorities 
(State Office of Health and Social Affairs of Berlin) approved 
the use of the samples (approval ID: StN 011/20) for research.

The 70 cases were analyzed with a deep learning–based MF 
algorithm (see below). Of these, 7 cases (all low grade accord-
ing to the original reports) had a computerized MC-ROI prese-
lection outside of the tumor area (due to MF predictions mainly 
in the epidermis, hair follicles, reserve cells of the sebaceous 
glands, or areas of crush artifacts) and were excluded from the 
study. The remaining 63 cases contained algorithmic MC-ROI 
preselection within the tumor area and were not further evalu-
ated for exclusion purposes. We randomly excluded 3 addi-
tional low-grade and 10 high-grade cases (according to the 
original reports) in order to reduce the study set to 25 low-
grade and 25 high-grade ccMCTs. Cases of the study set were 
randomly assigned numbers from 1 to 50. Additionally, a test 
slide (high-grade ccMCT) was provided to allow familiariza-
tion of study participants with the annotation software, the 
study tasks, and the properties of the digital images.

Study Instructions to Participants

Twenty-six pathologists from 13 different laboratories volun-
teered to participate in this study. The study material (WSIs, 

annotation software, files with algorithmic predictions) was 
provided, the goal and course of the study was explained, and 
the annotation software was demonstrated (using the test slide) 
to each participant. For stage 1, participants were instructed to 
search for mitotic hotspot MC-ROIs. However, no specific rec-
ommendations were given on how to find the “correct” 
MC-ROI. For all 3 stages, participants were instructed to anno-
tate all MFs in the MC-ROIs with high diligence using their 
“routine” decision criteria. No specific diagnostic criteria for 
“correct” identification and classification of MFs (including 
atypical MFs) were provided in order to validate a realistic 
diagnostic setting.

Annotation Software and Database Creation

The open source software SlideRunner2 was used in this 
study for annotating each enumerated MF in the precise pixel 
position in the digital image (object-level). Beyond the abil-
ity to view and navigate WSI, this software includes tools for 
fast image annotations, which are automatically stored in a 
database. For this study, each participant created their own 
databases (one for each stage) and annotated each MF pres-
ent in the MC-ROIs using a single click tool (saving the x 
and y coordinate in the WSI). Participants were instructed to 
pay close attention in placing the annotation in the center of 
the MFs.

SlideRunner allows integration of software plugins for 
computerized image analysis and visualization of algorith-
mic predictions. During specimen selection, all WSIs were 
analyzed by an MF algorithm plugin (see below), and pre-
dictions of the study cases were saved as separate files that 
were provided to the participants for visualization in stages 
2 and 3.

For each study stage, a different SlideRunner package was 
created, each including a different plugin that enabled visual-
ization of the computerized information relevant for the 
respective stage as an overlay on the WSI. As intended by the 
study design, the stage 1 package of the software did not 
allow visualization of any algorithmic detections. However, 
this package included a plugin for a rectangular box with the 
size of exactly 2.37 mm2 (aspect ratio of 4:3, width of 1777.6 
µm, and height of 1333.2 µm). The box was divided into a 
grid with 9 vertical lines (the distance between lines was less 
than the width of the field of view at 400× magnification), 
which intended to improve navigation in a meandering pat-
tern. Participants were able to move the box to the desired 
MC-ROI location by re-centering the box coordinates to the 
present field of view at any viewing magnification. Due to a 
software failure, the exact image location of the selected 
MC-ROIs was not saved in the database. Therefore, we retro-
spectively determined the approximate MC-ROIs in which 
the highest number of annotations in the image could be 
placed. This ensured that the shift between the approximate 
and the actual selected MC-ROIs were minimal and negligi-
ble for our analysis (see below). For 63 instances that did not 
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have an MF annotation (pathologist’s MC = 0), an approxi-
mate MC-ROI could not be determined retrospectively for the 
respective participant and WSI.

The plug-ins of the SlideRunner packages of the 2 subse-
quent stages visualized the predictions of the deep learning–
based algorithm (Fig. 1). Stage 2 included a plugin with a 2.37 
mm2-sized rectangular box (as described above) placed in the 
region that had the highest density of algorithmic MF detec-
tions (partial computer assistance, Suppl. Fig. S1). Unlike stage 
1, participants were unable to move the box to another tumor 
location, even if they considered this not to be the most appro-
priate tumor location. This was done in order to enable com-
parison of the pathologist’s performance to identify and classify 
individual mitotic figures in the same tumor locations. The 
software package for stage 3 displayed the fixed 2.37 mm2 box 
in the same tumor area and additionally visualized all predicted 
MFs (as dark green boxes) and predicted MF lookalikes (as 
light green boxes) along with their algorithmic classification 
scores (“confidence value”; Suppl. Fig. S2). We decided to 
visualize the MF lookalikes in order to account for potential 
false-negative algorithmic predictions. Algorithmic predictions 
were only intended as an aid to find potential candidates and 
classify them as mitotic figures, but pathologists still had to 
annotate each structure that they wanted to count as a MF or 
disregard the algorithmic detection if they did not want to count 
this structure. Pathologists were also instructed to annotate 
MFs that were not detected by the algorithm.

After participants finished stage 3, they submitted the 3 
databases to the principal investigators, who verified that all 
cases had been examined. All annotations that had a center 
coordinate outside of the 2.37 mm2 boxes were deleted as those 
represented erroneous or unintentional annotations. The par-
ticipants were anonymized by assigning a random identifica-
tion number to each participant.

Image Analysis Algorithm

Predictions of the deep learning–based algorithm were used for 
stages 2 and 3. Computerized image analysis comprised 2 anal-
ysis tasks as previously described by Aubreville et al:5 (1) a 
deep learning model that detects MFs and (2) postprocessing 
steps composed of computerized MC density calculation (heat 
map) and hotspot MC-ROI preselection.

Briefly, the detection of MFs is based on a concatenation of 
2 convolutional neural networks (RetinaNet and ResNet18 
architecture).5 The first convolutional neural network (object 
detector) was used to screen the entire WSI for potential MF 
candidates with high sensitivity and a high processing speed. 
The second convolutional neural network (patch classifier) was 
developed to classify small image patches of the detected can-
didates (by the first neuronal network) into MFs (classification 
threshold ≥0.5) and MF lookalikes (classification threshold 
<0.5) with high specificity. The model classification scores 
(“confidence value”) were extracted from the patch classifier 
(in order to display along with the algorithmic predictions) and 
ranged between 0.01 (very unlikely to be a MF) and 1.0 (very 

likely to be a MF). The models were trained and technically 
evaluated with an open access dataset with 44 880 MF annota-
tions in 32 ccMCT WSIs that were produced by the same insti-
tute that provided the cases for the present study (using the 
same staining protocol and WSI scanner).12 The ground truth 
for this training dataset of the algorithm was created by 2 
pathologists (the principle investigator and a participant of this 
study) via consensus of each label using HE images only 
(pHH3 immunolabeling was not available).

Predictions of the concatenated convolutional neural net-
works were used to derive the MC density map by computer-
ized calculation of the MC, that is, the number of algorithmic 
MF detections within a 2.37 mm2 box (see above), for every 
possible center coordinate of a 2.37 mm2 box that contains 
more than 95% tissue.5,11 The MC-ROIs for stages 2 and 3 were 
selected as the image location with the highest MF density in 
the MC map.

pHH3-Assisted Ground Truth

In order to evaluate the pathologists and algorithmic perfor-
mance on the object level (identify and classify individual MFs 
in the MC-ROIs at high magnification), a ground truth dataset 
was developed with the assistance of immunohistochemical 
labeling for phosphohistone H3 (pHH3). pHH3 is a DNA-
binding protein that is mostly specific for the mitotic phase of 
the cell cycle. Histone H3 is phosphorylated in early prophase 
(still indistinct in HE sections) but already dephosphorylated in 
telophase.23 Based on Tellez et al,39 we established a protocol to 
destain the initial HE-stained sections and immunohistochemi-
cally label the same tissue section in order to ensure that the 
exact same cellular objects were represented in both WSIs. The 
coverslips of HE-stained sections were removed by incubation 
in xylene. Subsequent to incubation in a descending alcohol 
series (99%, 80%) slides were destained under visual control in 
a 70% alcohol solution with 0.37% hydrogen chloride. After 
destaining, immunohistochemistry was performed, including 
blockage of endogenous peroxidase (with 10% H2O2), antigen 
retrieval by microwave heating (with citrate buffer), and anti-
gens blocked (with goat serum). For the primary antibody, we 
used Phh3 clone E173 (rabbit monoclonal, ab32107, Abcam), 
as this product was used in a previous canine study.34 Because 
the HE-stained sections of the study cases were produced at 
least 1 year earlier, a higher antibody concentration of 1:650 (as 
opposed to new tissue sections with 1:1500) was necessary 
(established on the excluded cases from this study; see above). 
The secondary antibody was a goat anti-mouse IgG (H+L) 
conjugated with alkaline phosphatase and incubated at a dilu-
tion of 1:200. 3,3′-Diaminobenzidin (DAB) was used as a chro-
mogen and hematoxylin as counterstain. ccMCTs were used as 
positive and negative controls. Immunolabeled glass slides 
were digitized as described above. In 10 of the 50 tissue sec-
tions included in the study, relevant tissue parts were lost dur-
ing immunohistochemical processing (if not mounted on 
adhesive glass slides) or immunohistochemical labeling was 
nonspecific (internal control compared to the HE staining). 
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Therefore, those cases were excluded from the pHH3-assisted 
labeling portion of this study and were not available for perfor-
mance evaluation on the object level.

Following this procedure, we produced 2 WSIs (one 
stained with HE and the other labeled with pHH3) from the 
same tissue section for 40 of the 50 cases. In contrast to using 
recut tissue sections, this process ensured visualization of the 
same cellular objects in both WSIs. Automated image regis-
tration (according to Jiang et al26) was performed in order to 
align the 2 images so that the tissues matched almost per-
fectly on a cellular level. Using a newly developed 
SlideRunner plug-in, it was possible to instantly switch 
between images with the 2 staining methods and therefore 
easily compare the information for each cell (Fig. 2). The 
principal investigator (a pathologist not involved as a study 
participant) developed a ground truth dataset (pHH3-assisted 
ground truth) for the algorithmically selected MC-ROIs of 
stages 2 and 3 in the HE images by annotating all the cells 
that were positive for pHH3 and additionally annotated the 
unambiguous late phase MFs that failed to label for pHH3 
(late phase MFs were a small proportion of all annotations). 
In addition, a pHH3-assisted count was performed in the 
manually selected MC-ROIs (stage 1) if the MC of the 
respective participant was higher than in stage 2 in order to 
evaluate which hotspot MC-ROI (manually or algorithmi-
cally selected) had a higher mitotic density (based on the 
pHH3-assisted count).

Performance Evaluation

The MC was defined as the number of annotations by partici-
pants within a MC-ROI. The pHH3-assisted MC was the 
number of ground truth annotations in the respective MC-ROI. 
Interobserver agreement of the MCs between the 3 stages was 
calculated by the interobserver correlation coefficient (ICC) 
and its 95% confidence interval (95% CI). The ICC describes 
how strongly the pathologist’s MC values of the same tumor 
case resemble each other. ICC were evaluated as poor = 0 to 
0.39, fair = 0.40 to 0.59, good = 0.6 to 0.74, and excellent = 
0.75 to 1.00.11 Differences were considered significant if the 
95% CI did not overlap.21 The coefficient of variation (CV) 
between the pathologists at each stage was calculated. The 
CV (in percent) is defined as the ratio of the standard devia-
tion to the mean. Smaller CV percentage values represent 
lower variability.

Performance of classifying MCs into low and high accord-
ing to the prognostic cutoff of MC ≥ 58,35,42 was measured by 
accuracy as the number of correctly (below or above cutoff 
according to the pHH3-assisted ground truth) classified 
instances divided by all instances. To calculate the P value for 
the difference in accuracy between the 3 stages, a generalized 
linear mixed model (GLMM) was used. We fitted a logistic 
regression using correct classification (1 = correct,  
0 = incorrect) as outcome and using a random effect for the 
pathologist to account for repeated measures (40 slides per 
pathologist).

For comparison of the manually selected approximate 
MC-ROIs, we produced images that visualize the region and a 
MC heatmap as an overlay on the WSI. The MC heatmap was 
based on the unverified algorithmic predictions and was calcu-
lated as previously described.11

The performance of the participants and algorithm to 
identify and classify individual MFs in the MC-ROIs of 
stages 2 and 3 (object detection task) was determined by 
standard object detection metrics that are commonly used for 
evaluation of MF algorithms.3,10,12,16,33,43–45,47 True positives 
(TP), false positives (FP), and false negatives (FN) were cal-
culated against the pHH3-assisted ground truth (Fig. 3). A 
pathologist’s annotation and a ground truth annotation were 
counted as TP if the center coordinates of both had a maxi-
mum Euclidean distance of 25 pixels (equivalent to 6.25 
µm). True negatives are not available for object detection 
tasks.10 Precision (also known as positive predictive value, 
evaluates how many of the annotated cells are “true” MF 
according to the ground truth), recall (also known as sensi-
tivity, evaluates how many of the ground truth MF were 
annotated by the participants) and the F1-score (harmonic 
mean of precision and recall) were defined as described by 
Bertram et al10: precision = TP/(TP + FP); Recall= TP/(TP + 
FN); F1 = 2× (precision × recall)/(precision + recall). 
Macro-averaged values were determined with the overall TP, 
FP, FN annotations or predictions of all cases totaled, and 
thus every MF identification and classification had the same 
weight regardless of the mitotic density of the individual 
images. This allows evaluation of the general performance of 
detecting each individual MF.48 For the micro-averaged val-
ues, we determined the metrics (precision, recall, F1-score) 
for each slide and participant, and subsequently calculated 
mean of these values.48 With this method, every image has 
the same weight, and the metrics represent the diagnostic 
performance on the sample level (individual MFs of cases 
with low mitotic density have a higher weight than individ-
ual MFs of cases with high mitotic density). This reflects 
more the diagnostic situation, where it is essential to have a 
particularly high performance on the object level in low and 
borderline mitotic density cases. In cases with an extremely 
high number of MFs (much higher than the prognostic MC 
cutoff), pathologists might experience a higher degree of 
fatigue or search satisfaction bias, which has a lower impact 
on the micro-averaged values. The 95% CI for the micro-
averaged precision, recall, and F1-score were determined 
using bootstrapping (5000 replicates, bias-corrected and 
accelerated CI). Differences between the object detection 
metrics were considered significant if the 95% CI did not 
overlap.21 The 95% CI values cannot be calculated for macro-
averaged values.

A recall bias between the 3 stages was considered small for 
multiple reasons: manual selection of the MC-ROI was only 
done in stage 1 (but not in stages 2 and 3), the tumor region 
evaluated at high magnification was almost always different 
between stage 1 and stages 2 and 3 (thus different MFs were 
evaluated), the tumor regions evaluated twice (in stages 2 and 
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3) contained 1263 to 4807 MFs per stage (according to the par-
ticipants annotations, see Results section), participants had to 
annotate each individual mitotic figure (as opposed to give a 
single diagnosis per case) and distinguish these from other 
structures (including lookalikes) in these images, and the 
amount of computerized information continuously increased 
from stages 1 to 3.

Results

Twenty-three of 26 (88%) pathologists from 11 laboratories 
completed this study. The remaining pathologists were 
excluded from analysis as they did not return results (N = 2) or 
did not examine all cases (N = 1). Of the included participants, 
22 (96%) were Diplomates of the American (N = 12) or 

Figures 2–3.  Immunohistochemistry-assisted ground truth. Figure 2. Labeling method of the ground truth dataset. The histological sections 
(hematoxylin and eosin stain, HE) were destained and relabeled with immunohistochemistry against phosphohistone H3 (pHH3). Subsequently, 
whole-slide images of both staining methods were aligned on the cellular level via automated image registration and combined to decide if a 
tumor cell has a mitotic figure (MF) or not. Ground truth annotations comprised pHH3-positive cells that were recognizable on HE images 
(green circles) or were not readily identifiable on HE images (blue circles; especially prophase MF) as well as unambiguous late phase (especially 
telophase) MF that were pHH3-negative (red circles). Here these patterns are displayed as 3 distinct colors but in the ground truth dataset 
those structures were labeled as one label class. Figure 3a. High-magnification image of a pHH3-stained tumor section used for creating the 
ground truth with 3 positive tumor cells (green circles) and a pHH3-negative mitotic figure imposter (arrow). Figure 3b. Histological image 
(HE stain) of the same tumor location as in Figure 3a with exemplary annotations by one of the study participants (blue circles). Compared to 
the pHH3-assisted ground truth, 2 annotations are true positives (TP), 1 annotation is a false positive (FP), and 1 annotation MF was missed 
(false negative, FN, arrow).
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European (N = 10) College of Veterinary Pathologists and one 
(4%) had completed a residency in veterinary anatomic pathol-
ogy. The duration of board certification ranged from 0 to 14 
years (median of 6 years). Experience of the participants with 
performing MCs and digital microscopy is listed in 
Supplemental Tables S1 to S3 (experience level may not be 
representative for some laboratories). Dogs of the included 
cases had a median age of 9 years (range: 4–13 years). Breeds 
of the included cases are listed in Supplemental Table S4. Time 
to automatically analyze the study WSI by the deep learning–
based algorithm (inference time) was on average 3:51 minutes 
(median time: 3:47 minutes; range: 1:41–7:13 minutes) using a 
PC running Linux with Intel Xeon E5-1630 CPU (4 cores @ 
3.7 GHz), NVIDIA GTX 1080 graphics processing unit and 
SATA 3.0-connected SSD. This inference time includes analy-
sis by the deep learning model (detection of MFs and classify-
ing their confidence values), and the subsequent postprocessing 
step (heat map calculation), which took only a few seconds.

All 23 participants examined the 50 cases at the 3 examina-
tion stages (3450 pathologist evaluations) and thereby created 
38 491, 59 634, and 68 570 annotations in stages 1, 2, and 3, 
respectively. The number of annotations (all 50 cases com-
bined) per participant ranged between 549 and 4182 (mean: 
1674; CV: 43%) for stage 1, between 1263 and 4412 (mean: 
2593; CV: 33%) for stage 2, and between 1827 and 4807 (mean: 
2981; CV: 21%) for stage 3. The pHH3-assisted ground truth 
dataset comprised 2617 annotations (40 cases only) and the 
deep learning–based algorithm predictions comprised 3063 
MF candidates (50 cases, without review by participants) for 
the ROIs of stages 2 and 3.

Computer-Assisted MCs Have Higher Agreement

First, we evaluated the effect of computer assistance on the 
overall MC. The average MC for all cases and pathologists was 

33.47 for stage 1, 51.86 for stage 2, 59.63 for stage 3, and 61.26 
for the deep learning–based algorithm. Compared to stage 1, 
the average pathologist MC was increased by 54.9% in stage 2 
and 78.2% in stage 3. Number of cases in which the MCs had 
very low values were notably reduced in stages 2 and 3. For 
example, MC = 0 were determined in 63 instances in stage 1 
and only in 12 and 3 instances in stages 2 and 3, respectively 
(see Suppl. Fig. S3 for more MC values). Agreement of the 
MCs was higher between stages 2 and 3 (examination of the 
same MC-ROI) than agreement between stages 1 and 2 (mostly 
different MC-ROI; Suppl. Fig. S4). Interobserver agreement of 
the MCs was good for stage 1 (ICC: 0.70; 95% CI: 0.60–0.79) 
and excellent for stage 2 (ICC: 0.81; 95% CI: 0.74–0.88) and 
stage 3 (ICC: 0.92; 95% CI: 0.88–0.96). The 95% CI of the 
ICC for stage 1 and stage 3 do not overlap; thus, the difference 
was considered statistically significant. The CV for the MCs 
was 78.2% for stage 1, 51.3% for stage 2, and 34.9% for stage 
3, thus reduced by more than half with full computer assis-
tance. Figure 4 shows the improvement in agreement of the 
MCs with the pHH3-assisted ground truth MCs if computer 
assistance for identification and classification of MFs (stage 3 
as opposed to stage 2) was available.

Computer Assistance Improves Accuracy of 
Prognostic Classification

Next, we evaluated how the computer-assisted approach influ-
enced determination of values below and above the cutoff of 
MC ≥ 5 for tumor prognostication (published cutoff for the 
MC as a solitary prognostic parameter).8,35,42 For all patholo-
gists and all 50 cases combined, 362, 170, and 116 instances 
were below and 788, 980, and 1034 instances were above the 
cutoff in stages 1, 2, and 3, respectively (Supplemental Table 
S5). Compared to the pHH3-assisted ground truth MCs (avail-
able for 40 cases), accuracy of classification below or above 

Figure 4.  Scatterplots of the participant’s mitotic count (MC) values (stages 2 and 3) and the algorithmic (unverified) MC compared with the 
pHH3-assisted ground truth MC (all obtained in the same mitotic hotspot MC-ROI based on the algorithmic heatmap). The black line in the 
scatterplots indicate equal values for ground truth and pathologists or algorithmic MCs.
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the cutoff, respectively, was 75.8% (95% CI: 72.3% to 80.1%) 
for stage 1, 86.6% (95% CI: 84.2% to 89.7%) for stage 2, 
91.7% (95% CI: 89.9% to 94.0%) for stage 3, and 95% for the 
deep learning–based algorithm (algorithmic predictions with-
out pathologist review). The increase of accuracy of the partici-
pants between stages 1 and 2 (P < .0001), stages 2 and 3 (P = 
.0012) and stages 1 and 3 (P < .0001) were significant (gener-
alized linear mixed model). Due to the case selection strategy, 
the distribution of the hotspot MC values of the study cases is 
not representative of a routine diagnostic situation. We there-
fore divided the 40 cases into 5 tiers based on the pHH3-
assisted ground truth MCs and determined individual accuracy 
values for these groups (Table 1). We determined that cases 
with ground truth MCs around the prognostic cutoff value had 
the lowest accuracy. However, also cases with pHH3-assisted 
ground truth MCs between 25 and 49 had falsely low MCs in 
20/138 instances (14.5%) without computer assistance (stage 
1), while 9/138 (6.5%) and 1/138 (0.7%) instances of those 
cases were misclassified in stages 2 and 3, respectively.

Algorithmic Area Preselection Is Superior in Finding 
Mitotic Hot Spots

We evaluated the distribution of the manually selected 
MC-ROIs in stage 1 by the 23 participants. Visual assessment 
revealed that the approximate MC-ROIs were widely distrib-
uted throughout the tumor section in most cases, even if a high 
variability of the MC distribution (based on the algorithmic 
predictions) was present, that is, mitotic hotspots were not 
detected consistently (Figs. 5–7, Suppl. Figs. S5–S54). In only 
2 cases, a similar tumor area was consistently chosen for the 
MC-ROI. In one of these cases (No. 5; Fig. 8), a region within 
the tumor exhibiting local invasion was selected by all partici-
pants, and in the other case (No. 37; Suppl. Fig. S41), the tumor 
location with highest cellular density was selected by 22/23 
participants. This contrasts with automated image analysis that 
will always propose the same tumor area (100% intra-algorith-
mic reproducibility).

As it was the goal to find mitotic hotspots and we hypothe-
sized that computer assistance is helpful for this, we compared 

the MCs of the participants in the manually selected MC-ROIs 
(stage 1) and algorithmically preselected MC-ROIs (stage 2). 
Of the 1150 MC pairs from all participants, in 908 instances 
(79.0%), the MCs were higher in stage 2, and in 55 instances 
(4.8%), the MC was the same in stages 1 and 2. MCs of stage 1 
were higher in 187/1150 MC pairs (16.2%) for all participants 
combined and in 0 to 20/50 MC pairs (median: 8; mean: 8.1) 
for each individual participant. For 151/187 of those instances 
with higher MCs in stage 1, it was possible to perform pHH3-
assisted MCs for the MC-ROIs of both stages in order to more 
definitively determine which region had the higher mitotic den-
sity. The pHH3-assisted MC was slightly higher in the manu-
ally selected MC-ROI from stage 1 in one instance (0.7%), the 
same in both stages in 4 instances (2.6%) and higher in the 
algorithmically preselected MC-ROIs from stage 2 in 146 
instances (96.7%). Only for one case (no. 27) was the algorith-
mically preselected MC-ROIs considered inappropriate as it 
composed of a tumor area with crush artifact that resulted in 
many false-positive predictions (pHH3-assisted MC was not 
available for this case).

Computer-Assisted MF Detection Improves Recall

The ability of the participants to identify and classify individual 
MFs was determined for the same MC-ROIs in stage 2 (unaided 
MF identification) and stage 3 (computer-assisted MF identifica-
tion). Annotations of each participant and predictions of the 
algorithm were compared to the pHH3-assisted ground truth. For 
the participants, we found an overall decrease of FNs by 38.4% 
between stage 2 (N = 23 107) and stage 3 (N = 14 256) and an 
overall increase of TPs by 23.7% between stage 2 (N = 37 117) 
and stage 3 (N = 45 929). A decrease of FNs and increase of TPs 
was present for 22/23 participants and a negligible decline (by 3 
annotations; <1%) was present for the participant that had the 
lowest number of FN and highest number of TP in stage 2 
(Supplemental Tables S6 and S7). FPs had an overall decrease 
by 3.8% between stage 2 (N = 10 981) and stage 3 (N = 10 582), 
whereas FPs were lower for 9 participants and higher for 14 par-
ticipants in stage 3. Subsequently, the macro-averaged recall had 
an overall increase by 14.6 percentage points (maximum 

Table 1.  Accuracy of the 23 study participants (stages 1, 2, and 3) and the deep learning–based algorithm (without pathologist review) to 
classify mitotic counts (MC) as below (MC < 5) or above (MC ≥ 5) the prognostic cutoff as compared to the pHH3-assisted ground truth 
MC (GT-MC).

GT-MC Number of cases Accuracy for Stage 1a Stage 2 Stage 3 Algorithm

0–4 4 Below cutoff 75.0% 50.0% 50.0% 50%
5–9 7 Above cutoff 31.7% 70.2% 82.6% 100%
10–24 8 Above cutoff 63.0% 89.1% 99.5% 100%
25–49 6 Above cutoff 85.5% 93.5% 99.3% 100%
≥50 15 Above cutoff 99.4% 100% 100% 100%
All cases 40 Below/above cutoff 75.8% 86.7% 91.7% 95%

a The GT-MC and the participants’ MC of stage 1 were not determined in the same tumor location. The GT-MC and the MC of stages 2 and 3 were 
determined in the mitotic hotspot location based on the algorithmic heatmap.
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30 percentage points; 22/23 participants improved), the macro-
averaged precision had an overall increase of 2.3 percentage 
points (maximum 21 percentage points; 11/23 participants 

improved) and the macro-averaged F1-score had an overall 
increase of 10.7 percentage points (maximum of 22.9 percentage 
points; 23/23 participants improved) between stages 2 and 3 

Table 2.  Performance (macro- and micro-averaged metrics with range or 95% confidence interval [CI]) of the 23 participants (partially 
or fully computer-assisted of stages 2 and 3, respectively) and the deep learning–based algorithm (unverified predictions) for detecting 
individual mitotic figures in mitotic hotspot regions of interest compared to a pHH3-assisted ground truth.

Metrics Precisiona Recalla F1 Scorea

Examination stage 2 3 2 3 2 3
Participants, macro-averaged 

values (range)
0.80 (0.56–0.95) 0.83 (0.58–0.94) 0.62 (0.37–0.82) 0.76 (0.54–0.87) 0.68 (0.53–0.79) 0.79 (0.67–0.84)

Participants, micro-averaged 
values (95% CI)

0.74 (0.72–0.76) 0.79 (0.78–0.81) 0.62 (0.60–0.63) 0.76 (0.75–0.78) 0.63 (0.61–0.64) 0.75 (0.74–0.77)

DL algorithm, macro-averaged 
value

0.84 0.81 0.83

DL algorithm, micro-averaged 
value (95% CI)

0.83 (0.80–0.85) 0.80 (0.76–0.84) 0.80 (0.77–0.82)

Abbreviations: DL, deep learning.
a The F1-score is the harmonic mean of precision (also known as positive predictive value) and recall (also known as sensitivity). The performance of the 
unverified algorithm is the same for stages 2 and 3.

Figures 5–8.  Approximate location of the mitotic count region of interest (MC-ROI) selected manually by each study participant (represented 
by the rectangular boxes) in the whole-slide images. The black box with the dashed line represents the algorithmically preselected MC-ROIs 
(algorithmic hotspot). The estimated MC heatmap is visualized by variable opacity of a green overlay (scale on the right side of image) on the 
histological image (hematoxylin and eosin stain) and is based on algorithmic mitotic figure predictions. Dark green areas represent mitotic 
hotspots. Figure 5. Case no. 33 with widely distributed MC-ROIs. Figure 6. Case no. 46 with widely distributed MC-ROIs. Figure 7. Case 
no. 38 with MC-ROIs mostly along the tumor periphery. Figure 8. Case no. 5 with similar MC-ROIs at a site of local tumor invasion.
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(Table 2, Figs. 9–11). Differences between the 2 examination 
stages of the micro-averaged F1-score (12.4 percentage points), 
precision (5.2 percentage points), and recall (14.9 percentage 
points) were similar (Table 2). The 95% CIs for the micro-aver-
aged F1-score, recall, and precision did not overlap between 
stages 2 and 3 (Fig. 9); thus, the improvement was considered 

significant. Experience level did not have an appreciable effect 
on participant performance (Supplemental Table S8). The deep 
learning–based algorithm (unverified predictions) had an almost 
balanced proportion of FP detections (N = 406) and FN detec-
tions (N = 496) and subsequently similar values for precision 
(0.84), recall (0.81), and the F1-score (0.83). The overall 

Figures 9–11.  Object detection performance (identification and classification of mitotic figures) of the 23 participants and the deep learning–
based algorithm in stages 2 and 3. Figure 9. Micro-averaged F1-score (upper graph), precision (middle graph), and recall (lower graph) with 
their 95% confidence intervals. The difference is considered significant if the intervals do not overlap. Figure 10. Macro-averaged recall and 
precision for the individual participants in stages 2 and 3 (connected by a black arrow) and the precision-recall curve for the algorithm (at 
different classification thresholds). For the algorithmic predictions for the present study, a single classification threshold was used that resulted 
in a recall of 0.81 and precision of 0.84. Figure 11. Macro-averaged F1-scores for the individual participants for stages 2 and 3. The dashed 
black line represents the F1-score of the algorithmic predictions.
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performance (F1-score) of the algorithms was comparatively 
high as it was not reached by participants in stage 2 and was only 
slightly exceeded by 2 participants in stage 3 (Fig. 11). The 
F1-score of the algorithm was considered to be significantly bet-
ter than the score of the participants of both stages (95% CI did 
not overlap).

Participants Considered Algorithmic MC-ROI 
Preselection to Be the Most Helpful Feature

Twenty-one of the 23 study participants (91%) filled out the 
concluding survey after they finished stage 3. Analysis revealed 
that participants considered MC-ROI selection to be the most 
difficult aspect of performing the manual MC (stage 1), whereas 
spotting potential MF candidates and classifying them against 
lookalikes was considered comparably easy (Supplemental 
Tables S9 and S10 and Fig. S55). Subsequently, most partici-
pants had the subjective impression that algorithmic MC-ROI 
preselection was extremely or very helpful. In contrast, visual-
ization of algorithmic predictions, as well as display of their 
algorithmic confidence values, was generally considered help-
ful to a lesser degree (Supplemental Tables S11 and S12 and 
Fig. S56). Almost all participants (N = 20/21) indicated that 
their decision of classifying MFs against lookalikes was con-
sciously influenced in stage 3 by the algorithmic confidence 
value at variable degrees ranging from being influenced in very 
few to many potential MF candidates (Supplemental Table 
S13), especially if participants were uncertain about the MF 
candidate (N = 17/20). Most participants considered digital 
microscopy slightly (N = 12/21) or significantly (N = 3/15) 
inferior to light microscopy for identification of MF 
(Supplemental Table S14) and mostly deemed fine-focusing/z-
stacking (not available for this study) necessary for at least 
some MF candidates (N = 14/21; Supplemental Table S15). 
The majority of the participants (81%; N = 17/21) considered 
the rectangular shape of the MC-ROI to be acceptable for per-
forming the MC in the study cases, while 2 participants found 
the shape inappropriate (2 participants had no opinion).

Discussion

The present study confirmed that inconsistency and inaccuracy 
of the MC arises from a combination of inappropriate MC-ROI 
selection (failure to find mitotic hot spots), incomplete MF 
identification, and imprecise MF classification. In order to 
enable highest prognostic value of the MC, it is necessary to 
develop methods to improve those critical steps. We addressed 
each of the 3 critical steps of the MC with our computer-
assisted approaches via algorithmic area preselection (stage 2), 
MF candidate visualization (stage 3), and display of algorith-
mic confidence values (stage 3). We were able to demonstrate 
significantly increased performance on the overall MC level 
and individual MF level with computer assistance. Participants 
of the present study reported that screening tumor sections for 
mitotic hotspots is the most difficult task of manual MCs and 
subsequently deemed algorithmic MC-ROI preselection by far 

the most useful tool. In fact, we have shown that algorithmic 
area preselection was superior to manual area selection in 
almost all instances. Nevertheless, visualization of potential 
MF candidates also had a strong positive effect on the patholo-
gists’ ability to find MFs in MC-ROIs (recall). In contrast, the 
benefit of displaying the algorithmic confidence values was 
considered controversial by participants (see below) and did 
not seem to have a strong positive impact on precision.

The results of the present study reveal high variability of the 
MC between pathologists that has led to marked inconsistency in 
prognostic stratification (in our case MC < 5 vs MC ≥ 58,35,42). 
While it was beyond the scope of the present study to correlate 
the different MC methods with patient outcome, it is assumed 
that this degree of inconsistency might have a relevant influence 
on the appropriate treatment recommendation by clinicians or 
oncologists. Of note, computer assistance has led to a more con-
sistent classification of the cases into the prognostic cutoff 
ranges, but we have also found an overall higher MC for our 
computer-assisted methods. Therefore, new prognostic cutoff 
values and stratifications have to be determined, potentially for 
each individual computer-assisted approach and software tool. 
For example, Elston et al19 have proposed a cutoff of 0 for group 
1 ccMCTs with good prognosis (group 2: 1–7; group 3: >7). 
This prognostic group is notably reduced in larger tumor sections 
(by a factor of 21×) if full computer assistance (stage 3) is used 
due to the improved sensitivity of MF detection. A limitation of 
the present study is that only a few cases with a truly low MC 
(below cutoff value) were included, and future studies need to 
verify our results for this subgroup. Future studies are also 
needed to evaluate the prognostic capability of computer-assisted 
MCs.

A particular strength of the present study was the use of a 
pHH3-assisted ground truth for performance evaluation. Most 
previous studies have evaluated their MF algorithms against a 
majority vote of pathologists’ annotations from HE ima
ges,3,5,12,33,38,45,47 which might be problematic due to human 
limitations in performing this task. If a consensus is generated 
by such a large group of participants as in the present study, a 
majority vote is very likely to include predominantly clear MFs 
and would not contain many morphologically inconclusive or 
equivocal but still “true” MFs. Hence, a majority vote will not 
necessarily represent the biological truth.10 The advantage of 
pHH3 immunohistochemistry (as opposed to HE images) is 
that MFs are easily spotted (higher sensitivity) and more easily 
classified against lookalikes (higher specificity with the excep-
tion of telophase MF).17,20,36 We highlight that some of the 
annotated pHH3-positive cells were extremely difficult to clas-
sify as MFs in the HE image (especially early prophase or if 
cells were tangentially sectioned) and might therefore have 
been missed (false negative) by study pathologists in all MC 
approaches. It is acknowledged that pHH3-derived labeling 
may overestimate prophase MFs and underestimate telophase 
MFs as compared to solely HE-based labeling.39 Therefore, we 
decided to use a combination of the pHH3 and HE image for 
annotating the ground truth. We believe that our ground truth 
labeling approach is the most objective and accurate reference 
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(gold standard) method available for MFs to date and was inde-
pendent of the participants (as opposed to a majority vote 
ground truth). The ground truth dataset was annotated by the 
principal investigator, who was not involved as a study partici-
pant and was only partially responsible for creating the training 
dataset of the deep learning model (labels were created by con-
sensus of 2 pathologists). Also, pHH3-immunolabeling was not 
available for the study participants nor for development of the 
algorithm. Regardless, the pHH3-assisted ground truth is still 
observer-dependent and therefore not errorless, and a bias on 
performance evaluation cannot be complete ruled out.

We have shown that identification of mitotic hotspots can be 
tremendously improved with computer assistance.5 An advan-
tage of algorithms is that they can efficiently analyze entire 
WSIs with 100% intra-algorithmic reproducibility and are 
therefore able to determine the mitotic distribution consistently 
in entire or even multiple tumor sections, while manual MF 
screening by pathologists is restricted to some field of views at 
high magnification due to time constraints. A limitation of our 
deep learning method was that 10% of the cases analyzed had 
an algorithmic MC-ROI preselection outside of the tumor area 
(cases were excluded) and one case had an algorithmic MC-ROI 
preselection in an area of crush artifacts. A previous study 
reported inappropriate MC-ROI selection in 58% of the cases.7 
In the present study, participants were unable to change the pre-
selected MC-ROI location, which was necessary in order to 
determine and compare the pathologist’s performance for 
detecting individual MFs. However, we highlight that software 
for routine application should allow the pathologist to modify 
the MC-ROI location if the preselected MC-ROI is considered 
inappropriate due to algorithmic failure. While it was beyond 
the scope of the present study to investigate approaches for 
software-pathologist interaction on MC-ROI selection, we pro-
pose that computer-assisted MC tools include one of the fol-
lowing features: (1) restriction of the algorithmic predictions to 
the actual tumor area, which can be delineated manually by a 
pathologist7 or segmented automatically by means of deep 
learning–based algorithms;22 (2) heat map visualization of 
mitotic density for quick manual selection and correction of the 
MC-ROI;15 (3) proposal of the top 3 to 5 hotspots areas from 
which pathologists can choose. Another aspect that needs to be 
considered for future implementation of computer-assisted 
approaches is the shape of the MC-ROI. Even though most par-
ticipants found the rectangular shape appropriate for the exam-
ined ccMCT cases, it might be useful to be able to adjust the 
MC-ROI shape for tumor types that require exclusion of rele-
vant non-neoplastic tissue (necrosis, hair follicles, connective 
tissue, etc) from the MC-ROI.18,32

Even if pathologists examine the same image sections, vari-
ability of the number of enumerated MFs has been noted,16,44,45,47 
and computer assistance seems to be a promising solution for 
improving MF identification and classification. Similar to the 
comparison between stages 2 and 3 of the present study, 
Pantanowitz et al33 investigated the influence of computer assis-
tance on the pathologist’s performance of annotating MFs in 
“hpf” images. Pathologists in that study33 had a somewhat lower 

performance (F1-score) overall as compared to our results 
(7.1% lower without and 7.7% lower with computer assistance), 
which might be related to the ground truth definition used. 
Pantanowitz et al33 used the majority vote of 4/7 pathologists to 
define a “true” MF (see above). Nevertheless, Pantanowitz et 
al33 demonstrated an increase of the overall F1-score similar to 
that of the present study (10% vs 10.7%); however, they had a 
slightly lower increase of the overall recall (11.7% vs 14.6%) 
and a higher increase of overall precision (8.8% vs 2.3%) than 
our study. This might also be related to the ground truth defini-
tion used, or the performance of the image analysis algorithm 
applied, or due to the level of the individual pathologists’ accep-
tance of the algorithmic predictions.

Of note, our results demonstrate that individual pathologists 
may have high recall/low precision, moderate recall/moderate 
precision, or high precision/low recall. This is probably influ-
enced to a large part by the decision criteria of individual 
pathologists for ambiguous patterns, and standardized morpho-
logical criteria for MFs might be helpful to harmonize the 
pathologist’s decision.18 Although all pathologists had overall 
high performance (F1-score), the individual precision-recall 
tradeoff of different pathologists may have a tremendous influ-
ence on the MCs and the prognostic stratification based on spe-
cific cutoff values. Our results show that the computer-assisted 
approach (stage 3) generally shifted the individual pathologists 
somewhat toward a more harmonic tradeoff between recall and 
precision (moderate recall/moderate precision). The overall 
direction of the shift coincides with the precision/recall of the 
algorithmic results and could be influenced by a confirmation 
bias of the experts. Unlike the study by Pantanowitz et al,33 we 
supplied the study participants with the algorithmic confidence 
value in stage 3. Although the model confidence scores overall 
had a strong correlation with the ground truth, some partici-
pants commented that a few confidence values contrasted with 
their degree of certainty. Interestingly, many participants felt 
that they were (negatively) biased by the confidence values 
especially for difficult MF candidates. A previous study has in 
fact shown that pathologist may fail to identify a high propor-
tion of incorrect (false negative and false positive) algorithmic 
predictions,29 and future studies need to determine the (positive 
or negative) effect of this bias in a diagnostic setting.

The results of our study were highly dependent upon ade-
quate performance of the applied algorithm. Algorithms always 
exhibit 100% intra-algorithmic reproducibility for the same 
images, but accuracy may vary largely between different algo-
rithms (inter-algorithmic variability; depending on numerous 
factors). The algorithm used in this study was created and evalu-
ated on a distinct dataset without employing IHC labeling. Yet, 
the algorithmic predictions of the present study were highly 
accurate (F1-score) compared to the pHH3-assisted ground 
truth (as compared to the study participants). The high perfor-
mance of the algorithm used for the present study can be attrib-
uted to the advanced deep learning methods applied,5 the high 
quality and quantity of the dataset used for training of the algo-
rithm,12 and the high representativeness of the training dataset 
for the present study cases (little domain shift, see below). 
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However, we also experienced several incorrect MF predictions 
and some inappropriate algorithmic MC-ROI preselections, 
which necessitates review by trained experts (computer-assisted 
MC) and further research on algorithmic solutions.

One of the most relevant concerns that cannot be consid-
ered solved to date is robustness in the application of such 
algorithms on images that are acquired with other scanners or 
have strong differences in HE staining (domain shift).3,4,10 
The consequence is that algorithms cannot necessarily be 
applied to images from different laboratories without prior 
validation and possibly modification (such as by color nor-
malization and augmentation,39,44 domain adaptation,4 and/or 
transfer learning3). A limitation of deep learning–based mod-
els is that the specific decision criteria are mostly not trans-
parent (“black box”) and situations in which the algorithm 
may fail are not easily foreseeable. It is those “unexpected” 
situations that highlight the necessity of careful validation of 
each new application for its intended use. Deep learning mod-
els can be tested statistically (using metrics such as recall, 
precision or the F1 score),10 and each laboratory that wants to 
use a MF algorithm should validate its performance based on 
those metrics. The 50 cases included in the present study sup-
port the impression that the algorithm works reliably in many 
cases, yet the included cases may not represent all potential 
sources of error and had a similar domain as the images used 
for training the deep learning model. A recent pilot study has 
shown that expert review, that is, computer assistance as 
opposed to unverified algorithmic predictions, is necessary to 
ensure high reliability of the MC in cases that have a pre-
sumed marked domain shift (and thus higher rate of algorith-
mic errors).15 Therefore, we consider computer-assisted 
approaches with verification by a trained pathologist to be 
highly beneficial, at least until more experience and progress 
is gained through research and routine use of these applica-
tions. Access to intermediate results of the algorithmic pipe-
line (such as visualization of MF predictions) may allow a 
higher degree of comprehensibility by the reviewing patholo-
gist and should therefore be encouraged. Future studies need 
to determine which degree of expert review is required, how 
reliably pathologists can detect algorithmic errors, and to 
what degree the decision of pathologists is consciously and 
unconsciously biased by algorithmic predictions.

If used reasonably, computer-assisted MC may also have a 
positive influence on the time required for examination of 
tumor specimens. For example, visualization of algorithmic 
MF detections in WSI has been reported to significantly reduce 
time required for MF enumeration, which was especially nota-
ble for less experienced pathologists.29,33 A recent pilot study 
has also reported a significant time improvement when using 
MC heat maps and MF candidate visualizations as a guide for 
a pathologist.15 In the present study, participants noted an enor-
mous time improvement between stages 1 and 2 due to omis-
sion of manual MC-ROI selection. However, we decided not to 
measure labor intensity of the 3 stages systematically, as our 
focus was to evaluate the potential benefits, limitations, and 
requirements of these software tools. Future studies can 

scrutinize the most efficient and reliable workflow when using 
these tools in a realistic diagnostic situation.

A limitation of the present study was that the algorithmi-
cally preselected MC-ROI could not be corrected and each MF 
had to be manually annotated in order to be able to calculate the 
performance of MF detection in the same tumor areas. This 
limitation does not reflect a realistic diagnostic situation that, 
on the one hand, might require manual correction of inappro-
priately preselected MC-ROIs (see above). On the other hand, 
time investment could possibly be reduced if pathologists only 
had to add MF missed by the algorithm and remove wrong pre-
dictions instead of annotating all MF (including the correct 
algorithmic predictions), as in the present study. Efficiency of 
computer-assisted diagnosis/prognosis largely depends on the 
degree of computer assistance (eg, stage 2 vs stage 3), the 
extent of pathologist’s review of algorithmic predictions (ver-
ify a subset or all predictions or even only a specific subset of 
cases such as borderline cases), the frequency of algorithmic 
errors (and thus the required extent of manual corrections), 
ease of use of the developed software (pathologist-software 
interaction), the pathologist’s experience with the computer-
assisted diagnosis/prognosis and the specific software, and the 
way the software is incorporated into the diagnostic workflow. 
Future studies should focus on these aforementioned aspects 
and thereby determine an appropriate tradeoff between work-
flow efficiency and diagnostic reliability for a diagnostic set-
ting. Future software development should improve on the 
assistive visualization of algorithmic predictions. For example, 
an assembly with small image tiles of all individual MF predic-
tions from the (pre)selected MC-ROI in a separate viewing 
window could possibly allow a quick review of predictions 
(true positives vs false positives) without having to navigate 
through the MC-ROI as has been described for automated 
blood smear evaluation systems.40

Conclusion

Our results demonstrate that computer assistance using an 
accurate deep learning–based model is a promising method for 
improving reproducibility and accuracy of MCs in histological 
tumor sections. Full computer assistance (assistance in 
MC-ROI selection and MF identification and classification) 
was superior to partial computer assistance (only assistance in 
MC-ROI selection) in the present study. This study shows that 
computer-assisted MCs may be a valuable method for stan-
dardization in future research studies and routine diagnostic 
tumor assessment using digital microscopy. Furthermore, 
improved work efficiency (such as by MC-ROI preselection) 
may be of interest for diagnostic laboratories and additional 
studies need to evaluate the degree of verification of algorith-
mic predictions required. Future research should also evaluate 
whether computer-assisted MC approaches will benefit tumor 
prognostication (compared to patient outcome).
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