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ABSTRACT

Reduction of unwanted environmental noises is an important

feature of today’s hearing aids (HA), which is why noise re-

duction is nowadays included in almost every commercially

available device. The majority of these algorithms, however,

is restricted to the reduction of stationary noises.

In this work, we propose a denoising approach based on a

three hidden layer fully connected deep learning network that

aims to predict a Wiener filtering gain with an asymmetric

input context, enabling real-time applications with high con-

straints on signal delay. The approach is employing a hearing

instrument-grade filter bank and complies with typical hear-

ing aid demands, such as low latency and on-line processing.

It can further be well integrated with other algorithms in an

existing HA signal processing chain.

We can show on a database of real world noise signals that

our algorithm is able to outperform a state of the art baseline

approach, both using objective metrics and subject tests.

Index Terms— noise reduction, hearing aid signal pro-

cessing, deep neural networks

1. INTRODUCTION

With societies aging globally, hearing loss is becoming a very

common problem worldwide. The development of a hearing

loss is typically accompanied by increasing difficulty to dis-

criminate speech from noise in challenging situations. Con-

sequently, besides amplification, modern hearing instruments

deliver a great spectrum of algorithmic possibilities to en-

hance hearing, especially hearing of speech signals in noisy

environments.

The signal-to-noise ratio is typically improved in hearing

instruments by making use of directional microphones [1, 2].

Directional processing, however, has the inherent side-effect,

that the target speaker needs to be in a defined direction, of-

ten in the frontal hemisphere, and that sounds emitted from
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other angles will likely be attenuated. While, for many sit-

uations, this assumption can be safely made, it can also be

disturbing in other situations, where the target source cannot

be assumed to be coming from the front. Furthermore, for

some instruments directional processing is not an option due

to limitations in size and power consumption, e.g. devices to

be inserted deeply into the ear canal.

2. STATE OF THE ART

Single-channel noise reduction aims to solve this problem,

making use of a single microphone signal only. Most noise

reduction schemes, however, use limited signal properties of

noisy environments, effectively only exploiting first and sec-

ond order statistics and targeting at steady state noises, re-

sulting in difficulties when dealing with non-stationary back-

ground signals. To overcome this, codebook-based noise re-

duction was proposed by Kuropatwinski [3]. This approach,

however, lacked robustness – a property very important for

industry-grade medical products, and was combined with a

recursive noise tracker by Rosenkranz and Puder to overcome

this limitation [4]. The use of longer context audio segments

with neural networks has been proposed by Hermansky and

Sharma [5] and has found applications in automatic speech

recognition [6]. In recent years, deep learning methods and

deep neural networks (DNNs) have become increasingly pop-

ular in speech recognition [7] and speech enhancement. Since

deep networks are able to learn a complex, nonlinear mapping

function, this makes them ideal candidates for noise reduc-

tion tasks, where complex priors (speech and distortion signal

properties) must be modeled.

Auto-encoder networks have been used by multiple au-

thors also in the field of audio denoising. Lu et al. were

amongst the first to report about successful use of denois-

ing auto-encoders for speech recognition systems [8]. Xia

et al. used a denoising auto-encoder to calculate an estimate

of clean speech which is then used in a traditional Wiener

filtering approach [9]. To cope with missing loss sensitiv-

ity at high frequencies, they introduce a frequency-dependent

weight, which effectively adjusts the learning rate at the last

layer of the autoencoder. However, as Kumar et al. have
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highlighted, these studies lack realistic noise scenarios, as the

same kind of noise was used for training as for testing.

When the network is used for direct speech signal estima-

tion, a high correlation between the loss function and human

perception should be demanded. This common problem was

addressed by Pascual et al., who proposed to use generative

adversarial networks, in effect using discrimination loss in-

stead of a minimum squared error that is typically used in

other works [10].

Besides auto-encoders, traditional fully-connected net-

work topologies have been used for audio denoising. Xu

et al. have proposed a DNN-based regression approach for

frequency-bin wise enhanced signal amplitude prediction in a

filter bank setting, using the noisy phase for signal reconstruc-

tion [11]. In their work, they have also shown that the DNN

can profit from the inclusion of a longer acoustic context.

A very important property of a hearing assistance device

is its overall latency, especially when it comes to mild to mod-

erate hearing losses, where acoustic coupling is typically open

and thus a strong component of the direct sound is reaching

the ear drum. Here, comb filter effects are introduced by the

superposition of processed signal and direct signal. Laten-

cies of below 10 ms are typically tolerated in this regard, with

lower latencies being tolerated better by subjects. This places

high demands on delay on every part of the signal processing

chain, especially the filter banks and noise reduction schemes.

This, together with the constraint for online processing,

was not given for any of the state of the art, which builds the

motivation for this work.

3. MATERIAL AND METHODS

We used 49 real-world noise signals, including non-stationary

signals, recorded at various places in Europe using hearing

aid microphones in a receiver in the canal-type hearing in-

strument shell (Signia Pure 312, Sivantos GmbH, Erlangen,

Germany) using calibrated recording equipment at a sampling

rate of 24 kHz. The signals have been mixed with German

sentences (N=260) from the EUROM database [12], which

has been upsampled to 24 kHz for this purpose.

3.1. Dataset Generation

Since the noise conditions in our dataset have been recorded

in real situations, levels should not be modified significantly.

The signal mixing process can be expressed as:

x = gL (n0 + gSs0) = gLn0 + gLgSs0 = s+ n (1)

where the original speech signal s0 is adjusted in level to

reach a defined SNR using gS. For data augmentation, we

adapt the idea of Kumar et al.[13] and combine up to four

noises with different offsets within the original files into the

noise mixture n0. The noise mixture is adjusted in level (gL ∈
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Fig. 1. Processing chain during DNN training. Signals are fed

into an analysis filter bank, the mixture is being normalized

and statistical values are provided to the network.

{−6, 0, 6} dB) to increase dataset variance, yielding a signal

mixture with realistic level information. For training, signals

with SNRs of {−100, 5, 0, 5, 10, 20}dBwere generated with

an equal distribution.

The train-validation-test split for our machine learning ap-

proach was done on original signal level, i.e. no speech or

noise signal that is contained in the training set is part of the

validation or test set.

3.2. Signal Processing Toolchain

Our toolchain, as depicted in Fig. 1, starts with analysis filter

banks (AFB) that are used to process the clean speech signal

s, the noise signal n and the noisy mixture x. A standard uni-

form polyphase filter bank with 48 frequency bins designed

for hearing aid applications is utilized for this [14], yielding

signals X(k, f), S(k, f) and N(k, f) with time-index k and

frequency index f .

As a first subsequent step after the filter bank, the log

power spectrum is calculated, followed by a normalization

step. Then, the signal including the temporal context is fed

into a fully connected network topology with 3 hidden layers

and 2048 nodes per layer. Finally, a 48 channel gain vector

Gw is being predicted and applied to the noisy signal X(k, f),
which is in turn synthesized again (SFB). This structure is es-

pecially suited for hearing instrument applications, as gain ap-

plication can well be combined with other algorithms working

on the signal chain, such as automatic gain control for hearing

loss compensation, and could be interpreted as known opera-

tor learning [15].

3.3. Asymmetric Temporal Context

As previously stated, one constraint in hearing instrument sig-

nal processing is the limited latency a device is allowed to

produce [14]. Besides the filter bank design, this constraint

also strongly restricts the algorithmic lookahead for noise re-

duction schemes. We assumed an overall latency of 8ms to

be tolerable, where approx. 6ms are consumed by the anal-

ysis and synthesis filter bank. Context information from past

samples is in turn only limited by the memory and process-
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Fig. 2. Validation loss in dependency of lookback time τ1 and

lookahead time τ2 after 10 epochs of training. Additionally,

an exponential curve fit is shown.

ing constraints of the instrument, which typically scales with

available chip technology. The time context of this work can

thus be divided into 2 components:

τ = τ1 + 1 + τ2 (2)

where τ1 is the look back time constant, and τ2 is the looka-

head time constant. Together with the current frame they de-

fine the input matrix to the network. For our setup, τ1 >> τ2.

3.4. Normalization

Normalization plays a key role in deep learning, since it pos-

itively influences convergence behavior and aids generaliza-

tion. Given the filter bank representation X(k, f) of the input

signal x(n), the signal is normalized as:

Xnorm(k, f) = X(k, f)−

∑τ2

i=−τ1
X(k + i, f)

τ

= X(k, f)− µ(f)

(3)

This frequency bin-wise normalization is thus calculated

on the available buffer, given the temporal context. This nor-

malization scheme requires no global information and thus

enables on-line processing. The calculated mean value vec-

tor µ is, alongside with the frequency bin-wise standard de-

viation σ, enhancing the model’s input as further contextual

information.

3.5. Network Details and Training

We observed that network convergence as well as RMSE loss

was positively influenced by using rectified linear unit acti-

vation functions within the hidden layers. The system was

trained on a Nvidia Titan Xp GPU using TensorFlow and the

Adam optimizer with an initial learning rate of 10−5 for 10
epochs.
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Fig. 3. Exemplary comparison of a fricative with the ground

truth comparing different temporal contexts. Top: ground

truth, middle: t1 = 30ms, bottom: τ1 = 200ms.

4. RESULTS AND DISCUSSION

When comparing the loss for different time constants of the

asymmetric context (Fig. 2), we find that the network profits

from increased information from both past, and future. The

benefit w.r.t. past context saturates at around 200 . . . 300 ms.

This is in line with the findings of Xu et al., and could hint

at the rate of speech syllables (≈ 4Hz) [16]. Looking at the

example of a fricative (Fig. 3) further hints towards this in-

terpretation: With almost no energy at the low frequencies,

the network with greater context is still able to differentiate

between the noisy fricative and a real noise signal.

We compared the results by our method with a state-of-

the-art noise reduction scheme, based on recursive minimum

tracking [17] that is being applied in commercially available

hearing instruments. Another comparison was made against

an idealized scheme, where the optimal Wiener gain is ap-

plied, and as anchor a badly tuned minimum statistics esti-

mator. For all settings, the maximum attenuation of the algo-

rithms was limited to 14 dB.

4.1. Objective Metrics

For numeric assessment of our complete test data set, we use

the short-term objective intelligibility metric from Taal et al.

[18]. To improve visibility of the results, we present the dif-

ference between the original noisy signal and the enhanced

signal, denoted as ∆STOI (see Fig. 4). For the DNN ap-

proach in low SNR conditions, we see that ∆STOI is on av-

erage close to zero, indicating no gains in intelligibility. For

SNR closer to real world conditions, the value improves with

saturating effects for higher SNRs. For the baseline approach,

the average value is consistently negative.

Following the formulation of Chen et al., we further in-

clude the noise reduction (NR) and speech distortion (SD)

metrics for our evaluation [19]. Comparing the baseline to
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Fig. 4. Objective measures of ideal Wiener gains, DNN pre-

diction (τ1 = 200ms, τ2 = 2ms) and recursive minimum

tracking baseline. Top: differences in STOI index, middle:

noise reduction (NR), bottom: speech distortion (SD).

the predicted gain using the DNN, we find that a higher noise

reduction can be achieved while at the same time producing

lower speech distortion.

4.2. Subjective Evaluation

Even though objective figures like STOI or others are de-

signed to correlate well with perception, the validity of such

measures can always be questioned for the actual noise re-

duction scheme that is being applied. Further, quality ratings

of a noise reduction system should always be made relative

to an upper boundary, limited by the SNR and the achievable

optimum performance given the general approach.

In audio coding, the evaluation is subject to a similar prob-

lem, in this case that the original audio signal might be of a

mediocre quality or might have signal parts that are perceived

as better in the processed than the original signal given a non-

optimal encoding. For this domain, the MUlti Stimulus test

with Hidden Reference and Anchor (MUSHRA) [20] was de-

veloped and is being widely used.

We apply this test also for the domain of noise reduc-

tion, because we find a similar setup: We also have a poten-

tially perceived non-optimal reference signal, we can derive

an anchor signal that should be perceived as being of worse

quality, and we want to compare multiple signals relative to

each other. For our case, especially the comparison with the

reference is of great importance, since a Wiener filter-based
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Fig. 5. Subjective results (MUSHRA test, N=20) of the pro-

posed algorithm (τ1 = 200ms, τ2 = 2ms) against the min-

imum recursive tracking baseline and an ideal Wiener filter

gain (ref).

scheme will always have the noisy phase in the output signal

and is thus restricted in quality for poor SNR conditions.

The test was carried out at Sivantos R&D site in Erlangen,

Germany. The vast majority of all (N=20) subjects participat-

ing in the test were audio engineering professionals and thus

highly qualified for signal quality assessment. Signals were

presented over a web interface (webMUSHRA implementa-

tion of Schoeffler et al.. [21]) using headphones in a calm

office environment setting. For each SNR condition, 4 in-

put signals of 12 s length were randomly picked from the test

dataset and processed for all test conditions. To not include

initialization of the recursive minimum tracker baseline, all

signals were cut after initialization.

Looking at the results (Fig.5), we find that the median sub-

jective quality rating improves in all conditions over the base-

line. Further, we find ceiling effects for the DNN-generated

signal, indicating signals with equal quality to the reference

for some conditions (cf. 5 dB and 10 dB).

5. SUMMARY

In this work we presented a deep learning-based approach for

noise reduction that is able to work with the restrictive condi-

tions of hearing instrument signal processing. The subjective

and objective evaluation showed improvements over a recur-

sive minimum tracking approach in a wide range of SNR con-

ditions using realistic noise scenarios.
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