
ar
X

iv
:2

01
2.

02
49

5v
2 

 [
cs

.C
V

] 
 8

 J
an

 2
02

1

How Many Annotators Do We Need?
A Study on the Influence of Inter-Observer Variability on the Reliability of

Automatic Mitotic Figure Assessment

Frauke Wilm1∗

, Christof A. Bertram2∗ , Christian Marzahl1, Alexander Bartel3,
Taryn A. Donovan4, Charles-Antoine Assenmacher5, Kathrin Becker6, Mark Bennett7,

Sarah Corner8, Brieuc Cossic9, Daniela Denk10, Martina Dettwiler11,
Beatriz Garcia Gonzalez7, Corinne Gurtner11, Annabelle Heier12, Annika Lehmbecker12,

Sophie Merz2,12, Stephanie Plog7, Anja Schmidt12, Franziska Sebastian12,
Rebecca C. Smedley8, Marco Tecilla13, Tuddow Thaiwong8, Katharina Breininger1,

Matti Kiupel8, Andreas Maier1, Robert Klopfleisch2, and Marc Aubreville1,14

1Pattern Recognition Lab, Computer Sciences, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Erlangen, Germany
2Institute of Veterinary Pathology, Freie Universität Berlin, Germany

3Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin
4Department of Anatomic Pathology, Animal Medical Center, New York, USA
5Department of Pathobiology, University of Pennsylvania, Philadelphia, USA

6Department of Pathology, University of Veterinary Medicine Hannover, Germany
7Synlab’s VPG Histology, Bristol, UK

8Veterinary Diagnostic Laboratory, Michigan State University, Lansing, USA
9Pharmacology & Preclinical Development, Idorsia Pharmaceuticals Ltd, Switzerland

10International Zoo Veterinary Group, Keighley, UK
11Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Switzerland

12IDEXX Vet Med Labor GmbH, Kornwestheim, Germany
13F. Hoffmann-La Roche Ltd, Basel, Switzerland

14Technische Hochschule Ingolstadt, Ingoldstadt, Germany

frauke.wilm@fau.de

Abstract. Density of mitotic figures in histologic sections is a prognostically
relevant characteristic for many tumours. Due to high inter-pathologist vari-
ability, deep learning-based algorithms are a promising solution to improve
tumour prognostication. Pathologists are the gold standard for database de-
velopment, however, labelling errors may hamper development of accurate
algorithms. In the present work we evaluated the benefit of multi-expert
consensus (n = 3, 5, 7, 9, 11) on algorithmic performance. While training
with individual databases resulted in highly variable F1 scores, performance
was notably increased and more consistent when using the consensus of three
annotators. Adding more annotators only resulted in minor improvements.
We conclude that databases by few pathologists and high label accuracy may
be the best compromise between high algorithmic performance and time in-
vestment.
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1 Introduction

Histologic examination of tumour specimens is used to derive important information
with regards to patient prognosis and selection of appropriate treatment. For numerous
tumour types, including canine mast cell tumours, cellular proliferation is one of the most
meaningful prognostic parameters. As part of the recommended grading schemes, cells
undergoing division (mitotic figures) must be counted in histologic sections. However,
identification of mitotic figures has a high degree of inter-observer variability due to
inconsistent classification of mitotic figures (as opposed to mitotic-like impostors) or
overlooking/omitting mitotic figure candidates [1, 2]. In order to improve reproducibility
and accuracy of enumerating mitotic figures, promising deep learning-based algorithms
for the automated analysis of digitised histologic sections have been developed [1, 3, 4, 5].
However, as pathologists are the gold standard for dataset development, visual and
cognitive limitations of human experts may hamper the consistency of datasets and
subsequently algorithmic performance [2].

All available datasets on mitotic figures from human and canine tumours have used
not more than two pathologists as annotators for initial labelling in histologic images
[2, 3, 4, 5, 6]. Disagreement between the labels of these two pathologists was reported
in up to 68.2 % [3]. Divergent labels between these two pathologists were reviewed for
final consensus by one [5] or two [3, 4] additional pathologists or by reassessment of
the same experts [2, 6]. Although consensus by multiple pathologists is expected to
counterbalance the high inter-rater variability, influence on algorithmic performance has
not been examined to date.

This study aims to evaluate the ideal number of expert opinions required for the de-
velopment of deep learning-based mitotic figure detection algorithms with high accuracy.
For this purpose, a well established object detection algorithm was trained with labels
derived from a consensus of a range of pathologists (n = 1-11) and evaluated against
reference annotations derived from the total consensus of twelve pathologists.

2 Material and methods

For this investigation, datasets were created from 50 histologic images of canine mast cell
tumours from 50 patients. Use of these samples was approved by the local governmental
authorities (State Office of Health and Social Affairs of Berlin, approval ID: StN 011/20).
Histologic sections were created with routine methods (haematoxylin and eosin stain)
and digitised at a resolution of 0.25 µm per pixel (400 x magnification) using an Aperio
ScanScope CS2 (Leica, Germany) scanner.

2.1 Creation of databases

Independent databases were created by twelve veterinary pathologists (each at least three
years of experience in histopathology) using the SlideRunner annotation software [7].
For each of the 50 slides, a field of interest in the tumour area with a standard size of
2.37 mm2 was selected and annotators marked centroid coordinates of all mitotic figures

2



recognised in these tumour regions. Each pathologist identified between 1,324 and 4,412
mitotic figures (total number of annotations: 32,917). The dataset was split into 35
training, 5 validation and 10 test images with similar variability in mitotic figure density
in the selected regions.

2.2 Deep learning-based mitotic figure detection

For mitotic figure detection we customised a publicly available RetinaNet implemen-
tation [1] with a ResNet18 stem. For network training, 2,500 patches (1,024 x 1,024
pixels at highest resolution) each containing at least one mitotic figure were randomly
drawn from the 35 training images. The network was trained with a variable number of
databases created by the pathologists. The training and validation reference was indi-
vidually defined as the majority vote of this subgroup. The training was split into two
phases. First, only the randomly initialised network heads were trained (batch size: 12)
for five epochs using a maximal learning rate of 10−3. Afterwards, the complete model
was trained for an additional ten epochs and a maximal learning rate of 10−4. During
this second phase, 1,500 patches from the validation set were used for model selection.

Four different training set-ups were evaluated: (1) The network was trained with
each individual pathologist’s database and the model performance was compared to the
annotator’s performance on the test set. To ensure stability, the F1 score was computed
as median of three independent training runs. (2) The network was trained on the
consensus of an increasingly larger, randomly chosen subset of pathologists. In order
to obtain unambiguous agreement, these increases consisted only of odd increments.
For each addition, ten training runs were averaged to determine the influence of the
random selection of annotators. For the last two experiments (3) and (4) the annotators
were sorted in descending order by their label agreement compared to the majority vote
measured by the F1 score. The model was then trained on (3) the first n pathologists
(=̂ highest agreement) and (4) on the last n pathologists (=̂ lowest agreement).

By using the consensus, we only trained with mitotic figures with at least 50 % agree-
ment. We modified the loss computation by weighting the sample with the percentage
of pathologists that agreed upon the respective sample (> 50-100 %).

2.3 Model evaluation

The test set was generated from ten test slides and comprised all mitotic figure labels
upon which the majority of all twelve pathologists (i.e. at least seven pathologists)
agreed. For model performance evaluation, the F1 score was computed. As previously
defined by Bertram et al. [6], a mitotic figure detection was counted as true positive
if the Euclidean distance of the reference and predicted bounding box centroids was at
most 25 pixels (=̂ 6.25 µm, i.e. approximately the average cell radius of neoplastic mast
cells). The detector confidence threshold was chosen based on the highest performance
on the validation set.
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3 Results

Label accuracy of the twelve pathologists compared to the majority vote was highly
variable with F1 scores ranging from 0.64 to 0.85 (median: 0.77) for the whole dataset and
from 0.68 to 0.86 (median: 0.77) for the test cases. In Fig. 1 the labelling performance
of each annotator is compared to the F1 scores of the RetinaNet, which was trained on
mitotic figure labels of the same pathologists. For the five pathologists with the lowest
label agreement on the reference annotations, the algorithmic approach showed similar
performance on the test dataset. Regardless of the label performance of the annotators,
the algorithmic F1 score was capped at around 0.74 for the network architecture used.
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Figure 1: Labelling performance (F1 score) of individual annotator compared to the
performance of networks trained with annotations from each respective pathologist (me-
dian and range of three training runs) evaluated on the majority vote test set.

Tab. 1 summarises the network performance when training the algorithm with databases
of an increasingly larger subset of annotators. Compared to a single annotator, mod-
els trained with multi-expert labels resulted in an overall higher performance and a
lower variability as measured by the interquartile range. Fig. 2 shows that training with
databases that have the highest agreement with the majority vote yielded the best re-
sults. However, this arrangement benefited the least from higher numbers of annotators
(as opposed to using the databases with the lowest agreement).

4 Discussion

The high variability between annotators in the present study is consistent with pre-
vious studies [2, 3, 8] and warrants a detailed evaluation of label consistency and the
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Figure 2: Performance (F1 score) of models trained with different combinations of
annotators. Whiskers represent the minimum and maximum F1 score from the training
runs.

Table 1: Comparison of F1 scores of models trained with different reference annotations
based upon the majority vote from different combinations of annotators.

Database Number of Training Median Min. Max. Interquartile
annotators Runs Range

Each once 1 18 x 3 0.726 0.625 0.763 0.038

Random 3 10 0.75 0.728 0.769 0.016
Random 5 10 0.749 0.729 0.777 0.017
Random 7 10 0.756 0.730 0.765 0.008
Random 9 10 0.763 0.745 0.771 0.008
Random 11 10 0.763 0.746 0.769 0.010

Highest agreement 3 5 0.751 0.73 0.762 0.010
Highest agreement 5 5 0.759 0.748 0.770 0.007
Highest agreement 7 5 0.767 0.75 0.776 0.003
Highest agreement 9 5 0.768 0.749 0.771 0.016

Lowest agreement 3 5 0.756 0.753 0.76 0.003
Lowest agreement 5 5 0.74 0.720 0.745 0.018
Lowest agreement 7 5 0.754 0.736 0.761 0.017
Lowest agreement 9 5 0.756 0.749 0.768 0.012

impact on algorithmic performance, as was the goal of the present study. Generally, our
results show that the use of a consensus of a higher number of pathologists for train-
ing the algorithm yields better and more consistent results. In particular, F1 scores
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were noticeably variable when training the algorithm with single annotators (interquar-
tile range: 0.038). A consensus by three pathologists was highly beneficial for more
consistent training results (interquartile range: 0.016). Increasing the number of ran-
domly selected annotators further only improved the median F1 score by a small amount
(+ 0.013). Nevertheless, we have also shown that even training with a single annotator
can result in high performance. Our results emphasise that high annotation accuracy
and consensus by a small number of pathologists may result in the best trade-off be-
tween algorithmic performance and labour intensity of dataset development. Further
enhancement of label consistency may be achieved with repeated screening of images or
algorithmically augmented labelling [6]. An interesting approach to reduce subjectivity
for future mitotic figures datasets was recently introduced by Tellez et al. [9]. In this
study, a specific immunohistochemical marker of mitotic figures was used to derive ob-
ject labels and labels were assigned to images with standard histologic stain via image
registration.

The major limitation of the conducted experiments was the pathologist-defined ground
truth. Although pathologists are the current gold standard for labelling histologic im-
ages, they have high inter-rater variability which hampers not only training of data-
driven algorithms (as proven in the present study) but also biases performance evalu-
ation. The finding that algorithms trained with multi-expert databases outperformed
many pathologists on the test set was attributed to the fact that algorithms yielded high
sensitivity. Furthermore, the experiments in the present work were limited to a standard
object detection architecture with relatively low complexity. Compensation for noisy la-
bels and higher F1 scores may be achieved with a more complex model, such as by adding
a second classification stage [1, 6], and larger training datasets. Further improvement
of data-derived algorithms may be accomplished with advanced deep learning methods
that incorporate label accuracy during training.
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