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Abstract. Assessing the mitotic count has a known high degree of intra-
and inter-rater variability. Computer-aided systems have proven to de-
crease this variability and reduce labeling time. These systems, however,
are generally highly dependent on their training domain and show poor
applicability to unseen domains. In histopathology, these domain shifts
can result from various sources, including different slide scanning systems
used to digitize histologic samples. The MItosis DOmain Generalization
challenge focused on this specific domain shift for the task of mitotic
figure detection. This work presents a mitotic figure detection algorithm
developed as a baseline for the challenge, based on domain adversarial
training. On the challenge’s test set, the algorithm scored an F1 score of
0.7183. The corresponding network weights and code for implementing
the network are made publicly available.
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1 Introduction

A well-established method of assessing tumor proliferation is the mitotic count
(MC) [12] - a quantification of mitotic figures in a selected field of interest. Identi-
fying mitotic figures, however, is prone to a high level of intra- and inter-observer
variability [3]. Recent work has shown that deep learning-based algorithms can
guide pathologists during MC assessment and lead to faster and more accurate
results [3]. However, these algorithmic solutions are highly domain-dependent
and performance significantly decreases when applying these algorithms to data
from unseen domains [7]. In histopathology, domain shifts are often attributed
to varying sample preparation or staining protocols used at different laborato-
ries. These domain shifts and their impact on the resulting performance of an
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algorithm have been tackled with a wide range of strategies, e.g. stain normaliza-
tion [9], stain augmentation [14], and domain adversarial training [7]. Domain
shifts, however, cannot only be attributed to staining variations but can also
include variations induced by different slide scanners [2]. The MItosis DOmain
Generalization (MIDOG) challenge [1], hosted as a satellite event of the 24th

International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI) 2021, addresses this topic in the form of assessing the MC
on a multi-scanner dataset. This work presents the reference algorithm developed
out-of-competition as a baseline for the MIDOG challenge. The RetinaNet-based
architecture was trained in a domain adversarial fashion and scored an F1 score
of 0.7183 on the final test set.

2 Material and Methods

The reference algorithm was developed on the official training subset of the
MIDOG dataset [4]. We did not use any additional datasets and had no access
to the (preliminary) test set during method development. The algorithm is based
on a publicly available implementation of RetinaNet [10] which was extended by
a domain classification path to enable domain adversarial training.

2.1 Dataset

The MIDOG training subset consists of Whole Slide Images (WSIs) from 200
human breast cancer tissue samples stained with routine Hematoxylin & Eosin
(H&E) dye. The samples were digitized with four slide scanning systems: the
Hamamatsu XR, the Hamamatsu S360, the Aperio CS2, and the Leica GT450,
resulting in 50 WSIs per scanner. For the slides of three scanners, a selected
field of interest sized approximately 2 mm2 (equivalent to ten high power fields)
was annotated for mitotic figures and hard negative look-alikes. These annota-
tions were collected in a multi-expert blinded set-up. Aiming to support unsu-
pervised domain adaptation approaches, no annotations were available for the
Leica GT450 so that participants could only use the images for learning a vi-
sual representation of the scanner. Figure 1 illustrates exemplary patches of the
scanners included in the training set.

The preliminary test set consists of five WSIs each for four slide scanning
systems: the Hamamatsu XR and the Leica GT450, which already contributed
to the training set, and the 3DHISTECH PANNORAMIC 1000 and the Hama-
matsu RS, which were not seen during training. The scanner models of the
preliminary test set, however, were undisclosed for the duration of the challenge.
Participants only knew that the preliminary test set consisted of two seen and
two unseen domains. This preliminary test set was used for evaluating the algo-
rithms before submission and publishing preliminary results on a leaderboard on
Grand Challenge1. The evaluation on Grand Challenge ensured that the partici-
pants had no access to test images during method development. This restriction

1 https://midog2021.grand-challenge.org/
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Fig. 1: Exemplary patches from the MItosis DOmain Generalization (MIDOG)
challenge. Figure reproduced with permission from Aubreville et al . [2].

was also followed for developing the baseline algorithm. The final test set consists
of 20 additional WSIs from the same scanners used for the preliminary test set.
After the submission deadline, all algorithms were deployed once on this final
test set for method comparison.

2.2 Domain Adversarial RetinaNet

For the domain adversarial training, we customized a publicly available Reti-
naNet implementation [10] by adding a Gradient Reversal Layer (GRL) and a
domain classifier. For the encoder, we used a ResNet18 backbone pre-trained
on ImageNet. For the domain discriminator, we were inspired by the work of
Pasqualino et al . [13] and likewise chose three repetitions of a sequence of a con-
volutional layer, batch normalization, ReLU activation, and Dropout, followed
by an adaptive average pooling and a fully connected layer. Implementation de-
tails can be obtained from our GitHub repository. We experimented with varying
the number and positions of the domain classifier but ultimately decided for posi-
tioning a single discriminator at the bottleneck of the encoding branch. Figure 2
schematically visualizes the modified architecture.

ResNet Encoder Feature Pyramid
Network

class subnet

box subnet

GRL

domain
discriminator

conv

batchnorm

ReLU

dropout

average pooling

fully-connected

Fig. 2: Domain adversarial RetinaNet architecture.
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2.3 Network Training

We split our training data into 40 training and ten validation WSIs per scanner
and ensured a similar distribution of high and low MC samples in each subset.
For network training, we used a patch size of 512 × 512 pixels and a batch size
of 12. Each batch contained three images of each scanner. To overcome class
imbalance, we employed a custom patch sampling, where half of the training
patches were sampled randomly from the slides and the other half was sampled
in a 512-pixel radius around a randomly chosen mitotic figure. Furthermore,
we performed online data augmentation with random flipping, affine transfor-
mations, and random lightning and contrast change. The loss was computed as
the sum of the domain classification loss for all scanners and the bounding box
regression and instance classification loss for all annotated scanners:

L =
∑
s∈S

1

Ms

Ms∑
m=1

Ldom,m + β(s) · (Lbb,m + Linst,m) β(s) =

{
0, if s = GT450.

1, otherwise.

S : set of scanners M : samples in batch

The bounding box loss Lbb was computed as smooth L1 loss and the focal
loss [8] function was used for both, the instance (Linst) and the domain (Ldom)
classification loss. During backpropagation, the gradient was negated by the
GRL and multiplied with α, a weighting factor which was gradually increased
from 0 to 1 following the exponential update scheme of Ganin et al . [6]. We
trained the network with a cyclical maximal learning rate of 10−4 for 200 epochs
until convergence. Model selection was guided by the highest performance on
the validation set as well as the highest domain confusion, i.e. highest domain
classification loss, to ensure domain independence of the computed features.

2.4 Evaluation

The training procedure described in the previous section was repeated three
times and the validation slides of the three annotated scanners were used for
performance assessment. To compare results across different model operating
points, we constructed precision-recall curves and compared the area under the
precision-recall curves (AUCPRs) averaged over all three scanners for which
mitotic figure annotations were available. As our final model, we selected the
model with the highest mean AUCPR on the validation set and selected the
operating point according to the highest mean F1 score. This resulted in a mean
AUCPR of 0.7551 and an F1 score of 0.7369 at an operating point of 0.64 on our
internal validation set. This model was submitted as a reference approach to the
MIDOG challenge and was evaluated using a Docker-based submission system
that ensured that participants of the challenge did not have access to the test
images at any time during the challenge. Before the evaluation on the final test
set, we ensured the sanity of the baseline algorithm by applying the model to
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the preliminary test set, which resulted in an F1 score of 0.7401. This evaluation
was run once, i.e., no hyperparameters were tuned on the preliminary test set.

For quantitative evaluation, we computed the F1 score for mitosis detection
on the challenge test set and compared the performance of the “reference ap-
proach”, trained with domain adversarial training, to a “weak baseline” trained
without normalization or augmentation and a “strong baseline” trained with nor-
malized images and the same online data augmentation methods as described in
Section 2.3 but without methods for domain adaptation.

3 Results and Discussion

Across all test images, our weak baseline scored an F1 score of 0.6279, our strong
baseline an F1 score of 0.6982, and our reference approach an F1 score of 0.7183.
Detailed results for precision, recall, and F1 scores of the three models by scanner
are summarized in Table 1. They show that the improved F1 score over the strong
baseline could mainly be attributed to a higher recall, i.e. less mitotic figures were
overlooked, while precision values were very similar for most scanners.

Table 1: Performance metrics per model and scanner. The Hamamatsu XR also
contributed to the training set with labeled images and the Leica GT450 with
unlabeled images. The other scanners were unseen during training.

Precision Recall F1 score
Weak

Baseline
Strong

Baseline
Reference
Approach

Weak
Baseline

Strong
Baseline

Reference
Approach

Weak
Baseline

Strong
Baseline

Reference
Approach

Seen Domains
XR 0.8043 0.7778 0.7678 0.7291 0.7586 0.7980 0.7649 0.7681 0.7826
GT450 0.9016 0.7360 0.7318 0.2792 0.6650 0.6650 0.4264 0.6987 0.6968
Unseen Domains
PANNORAMIC 1000 0.6698 0.5692 0.6723 0.7172 0.7475 0.8081 0.6927 0.6463 0.7339
RS 0.6559 0.6417 0.6364 0.4919 0.6210 0.6210 0.5622 0.6311 0.6286

All Scanners 0.7545 0.6965 0.7143 0.5377 0.6998 0.7223 0.6279 0.6982 0.7183

In Figure 3a, we used bootstrapping to visualize the distribution of F1 scores
per scanner. The results show that the weak baseline performed particularly
badly for the Leica GT450 scanner with an average F1 score of 0.4264 and a
high variance in performance across all test slides, which becomes apparent by
the wide distribution in the bootstrapping visualization. Looking at the detailed
results in Table 1, this was mainly attributed to a low recall, i.e. a lot of mitotic
figures were overlooked. Considering the example patches of the Leica scanner
shown in Figure 1, this result is not surprising, as the Leica scanner produces
images with a much higher illumination and less contrast compared to the other
scanners. Without normalization, these images can challenge the network, es-
pecially since the Leica scanner was not seen during training of the baseline
models due to missing annotations and was only used for training the domain
generalization component of the domain adversarial network. When comparing
the strong baseline with our reference approach, the models show very similar
performance for most of the scanners except for the unseen PANORAMIC 1000,
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where the domain adversarial training significantly increased the F1 score to
0.7339 compared to an F1 score of 0.6463 for the strong baseline. Furthermore,
the narrower distributions of the bootstrapping in Figure 3d indicate a lower
variance in performance compared to the wider distributions of the baseline
models in Figures 3b and 3c.

XR GT450 PANNORAMIC 1000 RS

(a) Bootstrapping (b) Weak Baseline

(c) Strong Baseline (d) Reference Approach

Fig. 3: Bootstrapping and Uniform Manifold Approximation and Projection
(UMAP) plots of the evaluated models. The weak baseline was trained with-
out any measures for normalization or augmentation and the strong baseline
was trained with normalized images and online augmentations.
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Additionally, we evaluated the models’ capability for domain generalization
by using Uniform Manifold Approximation and Projection (UMAP) [11] plots.
UMAP is a dimensionality reduction technique that can be used to visualize
the high dimensional feature representations within neural networks in a two-
dimensional space. For our plots, we have randomly sampled 30 patches on each
WSI of the MIDOG test set and selected the output of the last layer of our
RetinaNet encoders for visualization. The UMAP plot of the reference approach
is visualized in Figure 3d. The data clustering independent of scanner domains
shows that the domain adversarial training encouraged the extraction of domain-
independent features. As a comparison Figure 3b visualizes the UMAP plot for
the weak baseline. Here, the samples show a distinctive clustering according
to scanner vendors. The cluster centers of the two Hamamatsu scanners are
closer together, which is not surprising as they come from the same vendor and
the same series (NanoZoomer). Figure 3c shows the UMAP plot of the strong
baseline. Whereas the normalization and augmentation techniques pushed the
distributions closer together, the GT450 still forms a distinguishable cluster at
the lower right of the feature representation. Recalling the scanner-wise model
performance summarized in Table 1, however, this did not impair the mitosis
detection. Nevertheless, when comparing the bootstrapping visualizations in Fig-
ure 3c and Figure 3d, the remaining three scanners are less distinguishable in
the feature representation of the domain adversarial model which seemed to have
helped the mitotic figure detection for especially the unseen scanners. Interest-
ingly, Figure 3d shows a separated cluster on the right hand of the main cluster
with patches from all scanners. A closer look at the example patches shows that
these were predominantly patches with large white areas due to teared tissue or
empty fat vacuoles.

Figure 4 shows two examples where the domain adversarial model signifi-
cantly outperformed the strong baseline with F1 scores of 0.8 and 0.6 for the
PANORAMIC 1000 image in Figure 4a and F1 scores of 0.6364 and 0.4286 for
the Hamamatsu RS image in Figure 4b. The large differences in performance
could mainly be attributed to a higher number of false-positive predictions for
the baseline model. Both examples show very intense staining which might not
have been met with the augmentation methods used during training and thereby
challenged the strong baseline model.

4 Conclusion

In this work, we presented our baseline algorithm for the MIDOG challenge,
based on domain adversarial training. With an F1 score of 0.7183, the algo-
rithm is in line with previous mitotic figure algorithms trained and tested on
breast cancer images from the same domain [5]. The domain adversarial train-
ing improved especially the generalization across unseen scanner domains while
maintaining a similar performance on seen domains. The feature representation
as UMAP plots visualizes the successful extraction of domain invariant features
of the proposed network. In total, 17 algorithms were submitted to the MIDOG
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(a) PANORAMIC 1000 (b) RS

Fig. 4: Exemplary images where F1 scores for the strong baseline and the domain
adversarial varied significantly.

challenge for evaluation on the final test set. From these, four approaches out-
performed this strong but out-of-competition reference approach. The code used
for implementing and training the proposed network is publicly available in our
GitHub2 repository.
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