Jonas Ammeling
I am a research assistant and PhD student at the Technical University of Applied Sciences Ingolstadt. I received my Master’s degree in Statistics & Data Science from Leiden University in the Netherlands. My current work focuses on the development of deep learning applications in digital pathology and radiology. I am particularly interested in object detection methods, self-supervised learning, more user-centric approaches, and multimodal vision-language processing.
Publications:
2024
Ganz, Jonathan; Marzahl, Christian; Ammeling, Jonas; Rosbach, Emely; Richter, Barbara; Puget, Chloé; Denk, Daniela; Demeter, Elena A.; Tăbăran, Flaviu A.; Wasinger, Gabriel; Lipnik, Karoline; Tecilla, Marco; Valentine, Matthew J.; Dark, Michael J.; Abele, Niklas; Bolfa, Pompei; Erber, Ramona; Klopfleisch, Robert; Merz, Sophie; Donovan, Taryn A.; Jabari, Samir; Bertram, Christof A.; Breininger, Katharina; Aubreville, Marc
Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis Journal Article
In: Scientific Reports, vol. 14, no. 1, pp. 26273, 2024, ISSN: 2045-2322.
Abstract | Links | BibTeX | Tags:
@article{ganz_information_2024,
title = {Information mismatch in PHH3-assisted mitosis annotation leads to interpretation shifts in H&E slide analysis},
author = {Jonathan Ganz and Christian Marzahl and Jonas Ammeling and Emely Rosbach and Barbara Richter and Chloé Puget and Daniela Denk and Elena A. Demeter and Flaviu A. Tăbăran and Gabriel Wasinger and Karoline Lipnik and Marco Tecilla and Matthew J. Valentine and Michael J. Dark and Niklas Abele and Pompei Bolfa and Ramona Erber and Robert Klopfleisch and Sophie Merz and Taryn A. Donovan and Samir Jabari and Christof A. Bertram and Katharina Breininger and Marc Aubreville},
url = {https://www.nature.com/articles/s41598-024-77244-6},
doi = {10.1038/s41598-024-77244-6},
issn = {2045-2322},
year = {2024},
date = {2024-11-01},
urldate = {2024-11-04},
journal = {Scientific Reports},
volume = {14},
number = {1},
pages = {26273},
abstract = {Abstract
The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithms’ performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models’ performance. We found that the annotators’ object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). However, this enhancement in label consistency did not translate to improved performance for H&E-based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-stain detector was able to benefit from the higher consistency. This reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an improved PHH3-assisted labeling procedure.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithms’ performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models’ performance. We found that the annotators’ object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). However, this enhancement in label consistency did not translate to improved performance for H&E-based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-stain detector was able to benefit from the higher consistency. This reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an improved PHH3-assisted labeling procedure.
Aubreville, Marc; Ganz, Jonathan; Ammeling, Jonas; Rosbach, Emely; Gehrke, Thomas; Scherzad, Agmal; Hackenberg, Stephan; Goncalves, Miguel
Prediction of tumor board procedural recommendations using large language models Journal Article
In: European Archives of Oto-Rhino-Laryngology, 2024, ISSN: 1434-4726.
Abstract | Links | BibTeX | Tags:
@article{aubreville_prediction_2024,
title = {Prediction of tumor board procedural recommendations using large language models},
author = {Marc Aubreville and Jonathan Ganz and Jonas Ammeling and Emely Rosbach and Thomas Gehrke and Agmal Scherzad and Stephan Hackenberg and Miguel Goncalves},
url = {https://doi.org/10.1007/s00405-024-08947-9},
doi = {10.1007/s00405-024-08947-9},
issn = {1434-4726},
year = {2024},
date = {2024-09-01},
journal = {European Archives of Oto-Rhino-Laryngology},
abstract = {Multidisciplinary tumor boards are meetings where a team of medical specialists, including medical oncologists, radiation oncologists, radiologists, surgeons, and pathologists, collaborate to determine the best treatment plan for cancer patients. While decision-making in this context is logistically and cost-intensive, it has a significant positive effect on overall cancer survival.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Ganz, Jonathan; Ammeling, Jonas; Jabari, Samir; Breininger, Katharina; Aubreville, Marc
Re-identification from histopathology images Journal Article
In: Medical Image Analysis, pp. 103335, 2024, ISSN: 13618415.
@article{ganz_re-identification_2024,
title = {Re-identification from histopathology images},
author = {Jonathan Ganz and Jonas Ammeling and Samir Jabari and Katharina Breininger and Marc Aubreville},
url = {https://linkinghub.elsevier.com/retrieve/pii/S1361841524002603},
doi = {10.1016/j.media.2024.103335},
issn = {13618415},
year = {2024},
date = {2024-09-01},
urldate = {2024-09-20},
journal = {Medical Image Analysis},
pages = {103335},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Aubreville, Marc; Ganz, Jonathan; Ammeling, Jonas; Kaltenecker, Christopher; Bertram, Christof A.
Model-based Cleaning of the QUILT-1M Pathology Dataset for Text-Conditional Image Synthesis Proceedings Article
In: Medical Imaging with Deep Learning, Paris, France, 2024.
Abstract | Links | BibTeX | Tags:
@inproceedings{aubreville_model-based_2024,
title = {Model-based Cleaning of the QUILT-1M Pathology Dataset for Text-Conditional Image Synthesis},
author = {Marc Aubreville and Jonathan Ganz and Jonas Ammeling and Christopher Kaltenecker and Christof A. Bertram},
url = {https://openreview.net/forum?id=m7wYKrUjzV},
year = {2024},
date = {2024-07-01},
booktitle = {Medical Imaging with Deep Learning},
address = {Paris, France},
abstract = {The QUILT-1M dataset is the first openly available dataset containing images harvested from various online sources. While it provides a huge data variety, the image quality and composition is highly heterogeneous, impacting its utility for text-conditional image synthesis. We propose an automatic pipeline that provides predictions of the most common impurities within the images, e.g., visibility of narrators, desktop environment and pathology software, or text within the image. Additionally, we propose to use semantic alignment filtering of the image-text pairs. Our findings demonstrate that by rigorously filtering the dataset, there is a substantial enhancement of image fidelity in text-to-image tasks.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Aubreville, Marc; Stathonikos, Nikolas; Donovan, Taryn A.; Klopfleisch, Robert; Ammeling, Jonas; Ganz, Jonathan; Wilm, Frauke; Veta, Mitko; Jabari, Samir; Eckstein, Markus; Annuscheit, Jonas; Krumnow, Christian; Bozaba, Engin; Çayır, Sercan; Gu, Hongyan; Chen, Xiang ‘Anthony’; Jahanifar, Mostafa; Shephard, Adam; Kondo, Satoshi; Kasai, Satoshi; Kotte, Sujatha; Saipradeep, V. G.; Lafarge, Maxime W.; Koelzer, Viktor H.; Wang, Ziyue; Zhang, Yongbing; Yang, Sen; Wang, Xiyue; Breininger, Katharina; Bertram, Christof A.
In: Medical Image Analysis, vol. 94, pp. 103155, 2024, ISSN: 13618415.
@article{aubreville_domain_2024,
title = {Domain generalization across tumor types, laboratories, and species — Insights from the 2022 edition of the Mitosis Domain Generalization Challenge},
author = {Marc Aubreville and Nikolas Stathonikos and Taryn A. Donovan and Robert Klopfleisch and Jonas Ammeling and Jonathan Ganz and Frauke Wilm and Mitko Veta and Samir Jabari and Markus Eckstein and Jonas Annuscheit and Christian Krumnow and Engin Bozaba and Sercan Çayır and Hongyan Gu and Xiang ‘Anthony’ Chen and Mostafa Jahanifar and Adam Shephard and Satoshi Kondo and Satoshi Kasai and Sujatha Kotte and V. G. Saipradeep and Maxime W. Lafarge and Viktor H. Koelzer and Ziyue Wang and Yongbing Zhang and Sen Yang and Xiyue Wang and Katharina Breininger and Christof A. Bertram},
url = {https://linkinghub.elsevier.com/retrieve/pii/S136184152400080X},
doi = {10.1016/j.media.2024.103155},
issn = {13618415},
year = {2024},
date = {2024-05-01},
urldate = {2024-03-27},
journal = {Medical Image Analysis},
volume = {94},
pages = {103155},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Krügel, Sebastian; Ammeling, Jonas; Aubreville, Marc; Fritz, Alexis; Kießig, Angelika; Uhl, Matthias
Perceived responsibility in AI-supported medicine Journal Article
In: AI & SOCIETY, 2024, ISSN: 0951-5666, 1435-5655.
Abstract | Links | BibTeX | Tags:
@article{krugel_perceived_2024-1,
title = {Perceived responsibility in AI-supported medicine},
author = {Sebastian Krügel and Jonas Ammeling and Marc Aubreville and Alexis Fritz and Angelika Kießig and Matthias Uhl},
url = {https://link.springer.com/10.1007/s00146-024-01972-6},
doi = {10.1007/s00146-024-01972-6},
issn = {0951-5666, 1435-5655},
year = {2024},
date = {2024-05-01},
urldate = {2024-05-01},
journal = {AI & SOCIETY},
abstract = {Abstract
In a representative vignette study in Germany with 1,653 respondents, we investigated laypeople’s attribution of moral responsibility in collaborative medical diagnosis. Specifically, we compare people’s judgments in a setting in which physicians are supported by an AI-based recommender system to a setting in which they are supported by a human colleague. It turns out that people tend to attribute moral responsibility to the artificial agent, although this is traditionally considered a category mistake in normative ethics. This tendency is stronger when people believe that AI may become conscious at some point. In consequence, less responsibility is attributed to human agents in settings with hybrid diagnostic teams than in settings with human-only diagnostic teams. Our findings may have implications for behavior exhibited in contexts of collaborative medical decision making with AI-based as opposed to human recommenders because less responsibility is attributed to agents who have the mental capacity to care about outcomes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
In a representative vignette study in Germany with 1,653 respondents, we investigated laypeople’s attribution of moral responsibility in collaborative medical diagnosis. Specifically, we compare people’s judgments in a setting in which physicians are supported by an AI-based recommender system to a setting in which they are supported by a human colleague. It turns out that people tend to attribute moral responsibility to the artificial agent, although this is traditionally considered a category mistake in normative ethics. This tendency is stronger when people believe that AI may become conscious at some point. In consequence, less responsibility is attributed to human agents in settings with hybrid diagnostic teams than in settings with human-only diagnostic teams. Our findings may have implications for behavior exhibited in contexts of collaborative medical decision making with AI-based as opposed to human recommenders because less responsibility is attributed to agents who have the mental capacity to care about outcomes.
Krügel, Sebastian; Ammeling, Jonas; Aubreville, Marc; Fritz, Alexis; Kießig, Angelika; Uhl, Matthias
Perceived responsibility in AI-supported medicine Journal Article
In: AI & SOCIETY, 2024, ISSN: 0951-5666, 1435-5655.
Abstract | Links | BibTeX | Tags:
@article{krugel_perceived_2024,
title = {Perceived responsibility in AI-supported medicine},
author = {Sebastian Krügel and Jonas Ammeling and Marc Aubreville and Alexis Fritz and Angelika Kießig and Matthias Uhl},
url = {https://link.springer.com/10.1007/s00146-024-01972-6},
doi = {10.1007/s00146-024-01972-6},
issn = {0951-5666, 1435-5655},
year = {2024},
date = {2024-05-01},
urldate = {2024-05-23},
journal = {AI & SOCIETY},
abstract = {Abstract
In a representative vignette study in Germany with 1,653 respondents, we investigated laypeople’s attribution of moral responsibility in collaborative medical diagnosis. Specifically, we compare people’s judgments in a setting in which physicians are supported by an AI-based recommender system to a setting in which they are supported by a human colleague. It turns out that people tend to attribute moral responsibility to the artificial agent, although this is traditionally considered a category mistake in normative ethics. This tendency is stronger when people believe that AI may become conscious at some point. In consequence, less responsibility is attributed to human agents in settings with hybrid diagnostic teams than in settings with human-only diagnostic teams. Our findings may have implications for behavior exhibited in contexts of collaborative medical decision making with AI-based as opposed to human recommenders because less responsibility is attributed to agents who have the mental capacity to care about outcomes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
In a representative vignette study in Germany with 1,653 respondents, we investigated laypeople’s attribution of moral responsibility in collaborative medical diagnosis. Specifically, we compare people’s judgments in a setting in which physicians are supported by an AI-based recommender system to a setting in which they are supported by a human colleague. It turns out that people tend to attribute moral responsibility to the artificial agent, although this is traditionally considered a category mistake in normative ethics. This tendency is stronger when people believe that AI may become conscious at some point. In consequence, less responsibility is attributed to human agents in settings with hybrid diagnostic teams than in settings with human-only diagnostic teams. Our findings may have implications for behavior exhibited in contexts of collaborative medical decision making with AI-based as opposed to human recommenders because less responsibility is attributed to agents who have the mental capacity to care about outcomes.
Aubreville, Marc; Pan, Zhaoya; Sievert, Matti; Ammeling, Jonas; Ganz, Jonathan; Oetter, Nicolai; Stelzle, Florian; Frenken, Ann-Kathrin; Breininger, Katharina; Goncalves, Miguel
Few Shot Learning for the Classification of Confocal Laser Endomicroscopy Images of Head and Neck Tumors Book Section
In: Maier, Andreas; Deserno, Thomas M.; Handels, Heinz; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2024, pp. 143–148, Springer Fachmedien Wiesbaden, Wiesbaden, 2024, ISBN: 9783658440367 9783658440374.
@incollection{maier_few_2024,
title = {Few Shot Learning for the Classification of Confocal Laser Endomicroscopy Images of Head and Neck Tumors},
author = {Marc Aubreville and Zhaoya Pan and Matti Sievert and Jonas Ammeling and Jonathan Ganz and Nicolai Oetter and Florian Stelzle and Ann-Kathrin Frenken and Katharina Breininger and Miguel Goncalves},
editor = {Andreas Maier and Thomas M. Deserno and Heinz Handels and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-44037-4_42},
doi = {10.1007/978-3-658-44037-4_42},
isbn = {9783658440367 9783658440374},
year = {2024},
date = {2024-01-01},
urldate = {2024-02-21},
booktitle = {Bildverarbeitung für die Medizin 2024},
pages = {143–148},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Ammeling, Jonas; Hecker, Moritz; Ganz, Jonathan; Donovan, Taryn A.; Klopfleisch, Robert; Bertram, Christof A.; Breininger, Katharina; Aubreville, Marc
Automated Mitotic Index Calculation via Deep Learning and Immunohistochemistry Book Section
In: Maier, Andreas; Deserno, Thomas M.; Handels, Heinz; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2024, pp. 123–128, Springer Fachmedien Wiesbaden, Wiesbaden, 2024, ISBN: 9783658440367 9783658440374.
@incollection{maier_automated_2024,
title = {Automated Mitotic Index Calculation via Deep Learning and Immunohistochemistry},
author = {Jonas Ammeling and Moritz Hecker and Jonathan Ganz and Taryn A. Donovan and Robert Klopfleisch and Christof A. Bertram and Katharina Breininger and Marc Aubreville},
editor = {Andreas Maier and Thomas M. Deserno and Heinz Handels and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-44037-4_37},
doi = {10.1007/978-3-658-44037-4_37},
isbn = {9783658440367 9783658440374},
year = {2024},
date = {2024-01-01},
urldate = {2024-02-21},
booktitle = {Bildverarbeitung für die Medizin 2024},
pages = {123–128},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Ganz, Jonathan; Puget, Chloé; Ammeling, Jonas; Parlak, Eda; Kiupel, Matti; Bertram, Christof A.; Breininger, Katharina; Klopfleisch, Robert; Aubreville, Marc
Assessment of Scanner Domain Shifts in Deep Multiple Instance Learning Book Section
In: Maier, Andreas; Deserno, Thomas M.; Handels, Heinz; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2024, pp. 137–142, Springer Fachmedien Wiesbaden, Wiesbaden, 2024, ISBN: 9783658440367 9783658440374.
@incollection{maier_assessment_2024,
title = {Assessment of Scanner Domain Shifts in Deep Multiple Instance Learning},
author = {Jonathan Ganz and Chloé Puget and Jonas Ammeling and Eda Parlak and Matti Kiupel and Christof A. Bertram and Katharina Breininger and Robert Klopfleisch and Marc Aubreville},
editor = {Andreas Maier and Thomas M. Deserno and Heinz Handels and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-44037-4_41},
doi = {10.1007/978-3-658-44037-4_41},
isbn = {9783658440367 9783658440374},
year = {2024},
date = {2024-01-01},
urldate = {2024-02-21},
booktitle = {Bildverarbeitung für die Medizin 2024},
pages = {137–142},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
2023
Ammeling, Jonas; Manger, Carina; Kwaka, Elias; Krügel, Sebastian; Uhl, Matthias; Kießig, Angelika; Fritz, Alexis; Ganz, Jonathan; Riener, Andreas; Bertram, Christof A.; Breininger, Katharina; Aubreville, Marc
Appealing but Potentially Biasing – Investigation of the Visual Representation of Segmentation Predictions by AI Recommender Systems for Medical Decision Making Proceedings Article
In: MuC ’23: Mensch und Computer 2023, pp. 330–335, ACM, Rapperswil Switzerland, 2023, ISBN: 9798400707711.
@inproceedings{ammeling_appealing_2023,
title = {Appealing but Potentially Biasing - Investigation of the Visual Representation of Segmentation Predictions by AI Recommender Systems for Medical Decision Making},
author = {Jonas Ammeling and Carina Manger and Elias Kwaka and Sebastian Krügel and Matthias Uhl and Angelika Kießig and Alexis Fritz and Jonathan Ganz and Andreas Riener and Christof A. Bertram and Katharina Breininger and Marc Aubreville},
url = {https://dl.acm.org/doi/10.1145/3603555.3608561},
doi = {10.1145/3603555.3608561},
isbn = {9798400707711},
year = {2023},
date = {2023-09-01},
urldate = {2023-09-04},
booktitle = {MuC '23: Mensch und Computer 2023},
pages = {330–335},
publisher = {ACM},
address = {Rapperswil Switzerland},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Aubreville, Marc; Wilm, Frauke; Stathonikos, Nikolas; Breininger, Katharina; Donovan, Taryn A.; Jabari, Samir; Veta, Mitko; Ganz, Jonathan; Ammeling, Jonas; Diest, Paul J. Van; Klopfleisch, Robert; Bertram, Christof A.
A comprehensive multi-domain dataset for mitotic figure detection Journal Article
In: Scientific Data, vol. 10, no. 1, pp. 484, 2023, ISSN: 2052-4463.
Abstract | Links | BibTeX | Tags:
@article{aubreville_comprehensive_2023,
title = {A comprehensive multi-domain dataset for mitotic figure detection},
author = {Marc Aubreville and Frauke Wilm and Nikolas Stathonikos and Katharina Breininger and Taryn A. Donovan and Samir Jabari and Mitko Veta and Jonathan Ganz and Jonas Ammeling and Paul J. Van Diest and Robert Klopfleisch and Christof A. Bertram},
url = {https://www.nature.com/articles/s41597-023-02327-4},
doi = {10.1038/s41597-023-02327-4},
issn = {2052-4463},
year = {2023},
date = {2023-07-01},
urldate = {2023-07-26},
journal = {Scientific Data},
volume = {10},
number = {1},
pages = {484},
abstract = {Abstract
The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
The prognostic value of mitotic figures in tumor tissue is well-established for many tumor types and automating this task is of high research interest. However, especially deep learning-based methods face performance deterioration in the presence of domain shifts, which may arise from different tumor types, slide preparation and digitization devices. We introduce the MIDOG++ dataset, an extension of the MIDOG 2021 and 2022 challenge datasets. We provide region of interest images from 503 histological specimens of seven different tumor types with variable morphology with in total labels for 11,937 mitotic figures: breast carcinoma, lung carcinoma, lymphosarcoma, neuroendocrine tumor, cutaneous mast cell tumor, cutaneous melanoma, and (sub)cutaneous soft tissue sarcoma. The specimens were processed in several laboratories utilizing diverse scanners. We evaluated the extent of the domain shift by using state-of-the-art approaches, observing notable differences in single-domain training. In a leave-one-domain-out setting, generalizability improved considerably. This mitotic figure dataset is the first that incorporates a wide domain shift based on different tumor types, laboratories, whole slide image scanners, and species.
Ammeling, Jonas; Schmidt, Lars-Henning; Ganz, Jonathan; Niedermair, Tanja; Brochhausen-Delius, Christoph; Schulz, Christian; Breininger, Katharina; Aubreville, Marc
Attention-based Multiple Instance Learning for Survival Prediction on Lung Cancer Tissue Microarrays Book Section
In: Deserno, Thomas M.; Handels, Heinz; Maier, Andreas; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2023, pp. 220–225, Springer Fachmedien Wiesbaden, Wiesbaden, 2023, ISBN: 978-3-658-41656-0 978-3-658-41657-7, (Series Title: Informatik aktuell).
@incollection{deserno_attention-based_2023,
title = {Attention-based Multiple Instance Learning for Survival Prediction on Lung Cancer Tissue Microarrays},
author = {Jonas Ammeling and Lars-Henning Schmidt and Jonathan Ganz and Tanja Niedermair and Christoph Brochhausen-Delius and Christian Schulz and Katharina Breininger and Marc Aubreville},
editor = {Thomas M. Deserno and Heinz Handels and Andreas Maier and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-41657-7_48},
doi = {10.1007/978-3-658-41657-7_48},
isbn = {978-3-658-41656-0 978-3-658-41657-7},
year = {2023},
date = {2023-02-01},
urldate = {2023-06-30},
booktitle = {Bildverarbeitung für die Medizin 2023},
pages = {220–225},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
note = {Series Title: Informatik aktuell},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Aubreville, Marc; Ganz, Jonathan; Ammeling, Jonas; Donovan, Taryn A.; Fick, Rutger Hj.; Breininger, Katharina; Bertram, Christof A.
Deep Learning-based Subtyping of Atypical and Normal Mitoses using a Hierarchical Anchor-free Object Detector Book Section
In: Deserno, Thomas M.; Handels, Heinz; Maier, Andreas; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2023, pp. 189–195, Springer Fachmedien Wiesbaden, Wiesbaden, 2023, ISBN: 978-3-658-41656-0 978-3-658-41657-7, (Series Title: Informatik aktuell).
@incollection{deserno_deep_2023,
title = {Deep Learning-based Subtyping of Atypical and Normal Mitoses using a Hierarchical Anchor-free Object Detector},
author = {Marc Aubreville and Jonathan Ganz and Jonas Ammeling and Taryn A. Donovan and Rutger Hj. Fick and Katharina Breininger and Christof A. Bertram},
editor = {Thomas M. Deserno and Heinz Handels and Andreas Maier and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-41657-7_40},
doi = {10.1007/978-3-658-41657-7_40},
isbn = {978-3-658-41656-0 978-3-658-41657-7},
year = {2023},
date = {2023-02-01},
urldate = {2023-06-30},
booktitle = {Bildverarbeitung für die Medizin 2023},
pages = {189–195},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
note = {Series Title: Informatik aktuell},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Ganz, Jonathan; Lipnik, Karoline; Ammeling, Jonas; Richter, Barbara; Puget, Chloé; Parlak, Eda; Diehl, Laura; Klopfleisch, Robert; Donovan, Taryn A.; Kiupel, Matti; Bertram, Christof A.; Breininger, Katharina; Aubreville, Marc
Deep Learning-based Automatic Assessment of AgNOR-scores in Histopathology Images Book Section
In: Deserno, Thomas M.; Handels, Heinz; Maier, Andreas; Maier-Hein, Klaus; Palm, Christoph; Tolxdorff, Thomas (Ed.): Bildverarbeitung für die Medizin 2023, pp. 226–231, Springer Fachmedien Wiesbaden, Wiesbaden, 2023, ISBN: 978-3-658-41656-0 978-3-658-41657-7, (Series Title: Informatik aktuell).
@incollection{deserno_deep_2023-1,
title = {Deep Learning-based Automatic Assessment of AgNOR-scores in Histopathology Images},
author = {Jonathan Ganz and Karoline Lipnik and Jonas Ammeling and Barbara Richter and Chloé Puget and Eda Parlak and Laura Diehl and Robert Klopfleisch and Taryn A. Donovan and Matti Kiupel and Christof A. Bertram and Katharina Breininger and Marc Aubreville},
editor = {Thomas M. Deserno and Heinz Handels and Andreas Maier and Klaus Maier-Hein and Christoph Palm and Thomas Tolxdorff},
url = {https://link.springer.com/10.1007/978-3-658-41657-7_49},
doi = {10.1007/978-3-658-41657-7_49},
isbn = {978-3-658-41656-0 978-3-658-41657-7},
year = {2023},
date = {2023-02-01},
urldate = {2023-06-30},
booktitle = {Bildverarbeitung für die Medizin 2023},
pages = {226–231},
publisher = {Springer Fachmedien Wiesbaden},
address = {Wiesbaden},
note = {Series Title: Informatik aktuell},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}
Ammeling, Jonas; Wilm, Frauke; Ganz, Jonathan; Breininger, Katharina; Aubreville, Marc
Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge Book Section
In: Sheng, Bin; Aubreville, Marc (Ed.): Mitosis Domain Generalization and Diabetic Retinopathy Analysis, vol. 13597, pp. 201–205, Springer Nature Switzerland, Cham, 2023, ISBN: 978-3-031-33657-7 978-3-031-33658-4, (Series Title: Lecture Notes in Computer Science).
@incollection{sheng_reference_2023,
title = {Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge},
author = {Jonas Ammeling and Frauke Wilm and Jonathan Ganz and Katharina Breininger and Marc Aubreville},
editor = {Bin Sheng and Marc Aubreville},
url = {https://link.springer.com/10.1007/978-3-031-33658-4_19},
doi = {10.1007/978-3-031-33658-4_19},
isbn = {978-3-031-33657-7 978-3-031-33658-4},
year = {2023},
date = {2023-01-01},
urldate = {2023-07-02},
booktitle = {Mitosis Domain Generalization and Diabetic Retinopathy Analysis},
volume = {13597},
pages = {201–205},
publisher = {Springer Nature Switzerland},
address = {Cham},
note = {Series Title: Lecture Notes in Computer Science},
keywords = {},
pubstate = {published},
tppubtype = {incollection}
}