Jonathan Ganz

My name is Jonathan Ganz and I am a PhD student at the Ingolstadt University of Applied Sciences. I received my bachelor’s and master’s degrees in medical engineering from the University of Applied Sciences Trier. Besides my general interest in deep learning and medical image understanding, my research focuses on the assessment of global and local information from histology slides using deep learning.

Publications:

Ammeling, J., Manger, C., Kwaka, E., Krügel, S., Uhl, M., Kießig, A., Fritz, A., Ganz, J., Riener, A., Bertram, C. A., Breininger, K., & Aubreville, M. (2023). Appealing but Potentially Biasing – Investigation of the Visual Representation of Segmentation Predictions by AI Recommender Systems for Medical Decision Making. MuC ’23: Mensch Und Computer 2023, 330–335. https://doi.org/10.1145/3603555.3608561 Cite
Aubreville, M., Wilm, F., Stathonikos, N., Breininger, K., Donovan, T. A., Jabari, S., Veta, M., Ganz, J., Ammeling, J., Van Diest, P. J., Klopfleisch, R., & Bertram, C. A. (2023). A comprehensive multi-domain dataset for mitotic figure detection. Scientific Data, 10(1), 484. https://doi.org/10.1038/s41597-023-02327-4 Cite Download
Ammeling, J., Wilm, F., Ganz, J., Breininger, K., & Aubreville, M. (2023). Reference Algorithms for the Mitosis Domain Generalization (MIDOG) 2022 Challenge. In B. Sheng & M. Aubreville (Eds.), Mitosis Domain Generalization and Diabetic Retinopathy Analysis (Vol. 13597, pp. 201–205). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-33658-4_19 Cite
Ammeling, J., Schmidt, L.-H., Ganz, J., Niedermair, T., Brochhausen-Delius, C., Schulz, C., Breininger, K., & Aubreville, M. (2023). Attention-based Multiple Instance Learning for Survival Prediction on Lung Cancer Tissue Microarrays. In T. M. Deserno, H. Handels, A. Maier, K. Maier-Hein, C. Palm, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2023 (pp. 220–225). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_48 Cite Download
Aubreville, M., Ganz, J., Ammeling, J., Donovan, T. A., Fick, R. Hj., Breininger, K., & Bertram, C. A. (2023). Deep Learning-based Subtyping of Atypical and Normal Mitoses using a Hierarchical Anchor-free Object Detector. In T. M. Deserno, H. Handels, A. Maier, K. Maier-Hein, C. Palm, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2023 (pp. 189–195). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_40 Cite Download
Ganz, J., Lipnik, K., Ammeling, J., Richter, B., Puget, C., Parlak, E., Diehl, L., Klopfleisch, R., Donovan, T. A., Kiupel, M., Bertram, C. A., Breininger, K., & Aubreville, M. (2023). Deep Learning-based Automatic Assessment of AgNOR-scores in Histopathology Images. In T. M. Deserno, H. Handels, A. Maier, K. Maier-Hein, C. Palm, & T. Tolxdorff (Eds.), Bildverarbeitung für die Medizin 2023 (pp. 226–231). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-41657-7_49 Cite Download
Ganz, J., Bertram, C. A., Klopfleisch, R., Jabari, S., Breininger, K., & Aubreville, M. (2022). Classification of visibility in multi-stain microscopy images. Medical Imaging with Deep Learning 2022. Cite Download
Ganz, J., Kirsch, T., Hoffmann, L., Bertram, C. A., Hoffmann, C., Maier, A., Breininger, K., Blümcke, I., Jabari, S., & Aubreville, M. (2021). Automatic and explainable grading of meningiomas from histopathology images. 69–80. https://proceedings.mlr.press/v156/ganz21a/ganz21a.pdf Cite Download